
Chapter 6
Solution of a Homogeneous Version
of Love Type Integral Equation
in Different Asymptotic Regimes

Laurent Baratchart, Juliette Leblond, and Dmitry Ponomarev

6.1 Introduction

For h, a > 0, we consider the following homogeneous Fredholm integral equation
of the second kind

h

π

∫ a

−a

f (t)

(x − t)2 + h2
dt = λf (x) , x ∈ (−a, a) , (6.1)

which can be viewed as a problem of finding eigenfunctions of the integral operator
PhχA: L2 (A) → L2 (A) with

Ph [f ] (x) := (ph � f ) (x) = h

π

∫ ∞

−∞
f (t)

(x − t)2 + h2
dt, (6.2)

ph (x) := h

π

1

x2 + h2 , (6.3)

and χA being the characteristic function of the interval A := (−a, a).
Integral equations with kernel function (6.3) have a long history (starting with

[Sn23] as the earliest mention we could trace and up to recent papers [TrWi16a,
TrWi16b, TrWi18, Pr17]). It most commonly arises in rotationally symmetric
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electrostatic [Lo49] or fluid dynamics problems [Hu64a] (in such contexts it is most
famously known as Love equation), quantum-mechanical statistics of Fermi/Bose
gases (known there as Gaudin/Lieb-Liniger equation, respectively) [Ga71, LiLi63],
antiferromagnetic one-dimensional Heisenberg chains [Gr64], and is relevant as
well in other contexts such as probability theory [KaPo50] and radiative transfer
[Tr69]. Since ph is the two-dimensional Poisson kernel for the upper half-plane,
the integral equation (6.1) has also applications to problems of approximation
by harmonic functions [LePo17] and it is instrumental in some inverse source
problems for the Poisson PDE (e.g., the so-called inverse magnetization problems,
see [BaEtAl13]).

The class of exactly solvable convolution integral equations on interval is
extremely narrow and rarely exceeds the class of equations with kernels whose
Fourier transform is a rational function. Such approaches usually hinge on matrix
Wiener-Hopf factorization which are inapplicable due to non-smooth and non-
algebraic behavior at infinity of the Fourier transform of the kernel function (6.3):
p̂h (k) = e−2πh|k|. Therefore, the main hope for an analytical solution is a structural
approach (i.e., when exact solutions are determined up to constants that cannot be
expressed in a closed-form) or an asymptotic one. Despite seeming simplicity of
the kernel function ph, the integral equation (6.1) evades applicability of relevant
constructive techniques: both for exact structural [LaMu65] and asymptotical
solutions [KnKe91, Hu64b]. The problem of failure of asymptotic approaches (when
the length of the interval is large) in [KnKe91, Hu64b] is the lack of sufficient decay
of the kernel function at infinity (alternatively, the lack of existence of second-order
derivative at the origin of the Fourier transform of the kernel function). The powerful
approach of Leonard and Mullikin [LaMu65] aiming to obtain essentially exact
sine/cosine solutions (with frequencies to be determined from unsolvable explicitly
auxiliary equations) breaks down since the inverse Laplace transform of the kernel
function is not of constant sign which the authors claim to be merely a technical
problem (according to them, the assumption of constant sign is made to “simplify
the discussion”). However, from results of our approach we will see that change of
the sign of this function that occurs infinite number of times results in a qualitatively
different form of solutions which are beyond simple trigonometric functions shifted
by constants (see the results for the small interval and eigenfunctions of a higher
order in case of the large interval).

To the best of our knowledge, the only available result in the literature regarding
Eq. (6.1) (except for its non-homogeneous version with λ = ±1) is the exact
exponential decay law of eigenvalues [Wi64] and a relevant reduction to a hypersin-
gular equation which “appears too difficult to solve explicitly” [KnKe91] (see also
Sect. 6.6).

Consideration of the homogeneous version of the equation with the kernel (6.3)
is the most general in a sense that the obtained solutions (eigenfunctions) permit
construction of the resolvent kernel (in a form of a uniformly and absolutely
converging series, as a consequence of Mercer theorem for positive definite
kernels) for a general non-homogeneous equation or, as a more practical alternative
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(due to completeness and orthogonality of eigenfunctions and the fast decay of
eigenvalues), provide solution in a form of expansion over first few eigenfunctions.

After discussing general spectral properties of the integral operator (Sect. 6.2),
we propose original constructive techniques for obtaining asymptotical solution
for the case of small (Sect. 6.3) and large size of interval (Sect. 6.4). When the
interval is small, the integral equation can be approximated by another one which
admits a commuting differential operator. This fact allows reduction of the problem
to solving a second-order boundary-value problem whose solutions upon further
approximations are prolate spheroidal harmonics (Slepian functions). When the
interval is large, the problem can be transformed into an integro-differential equation
on a shifted half-line. Integral kernel function of such problem consists of two terms:
one depends on the difference of the arguments, the other—on their sum. The latter
turns out to be small for large interval and hence we end up with approximation by
a convolution integro-differential equation which we solve by an extended Wiener-
Hopf method. Connection of this half-line problem solution to the solution of the
original equation inside the original interval is provided by analytic continuation
that can be performed by means of solution of an elementary non-homogeneous
ODE. Finally, we illustrate the obtained asymptotical results, compare them with
numerical solution (Sect. 6.5), and outline potential further work (Sect. 6.6).

6.2 General Properties

Since the kernel ph (x) is an even and real-valued function, the operator PhχA is
self-adjoint, and because of the regularity of ph (x), the operator is also compact
(e.g., as a Hilbert-Schmidt operator), and, by its analytic properties, has a dense
range in L2 (A). Hence the standard spectral theorem [NaSe00] reformulates as

Theorem 1 There exists (λn)
∞
n=1 ∈ R, λn → 0 as n → ∞ and (fn)

∞
n=1 is a

complete set in L2 (A).

Basic properties of eigenfunctions and eigenvalues can be outlined in the following
proposition (see [Po16]).

Proposition 1 For λ, f satisfying (6.1), the following statements hold true:
(a) All (λn)

∞
n=1 are simple, and λn ∈ (0, 1),

(b) Each fn is either even or odd, real-valued (up to a constant multiplicator), and
fn ∈ C∞ (

Ā
)
. Moreover, fn (±a) �= 0.

The key result here is non-vanishing behavior of eigenfunctions at the endpoints
implying the multiplicity (simplicity) of the spectrum which, in particular, along
with the evenness of ph, entails further the real-valuedness and a certain parity of
each solution fn, a fact that will be used constructively in Sect. 6.4.

The upper bound for the eigenvalues in part (a) of Proposition 1 can be improved
to
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λn ≤ 2

π
arctan

a

h
, n ∈ N+,

and asymptotically exponential decay of higher-order eigenvalues is given by

log λn � −nπ
K (sech (πa/h))

K (tanh (πa/h))
, n � 1 (6.4)

where K (x) := ∫ π/2
0

dθ√
1−x2 sin2 θ

the complete elliptic integral of the first kind.

Note that, since the spectrum is simple, we can uniquely order eigenvalues as

0 < · · · < λ3 < λ2 < λ1 < 1,

and denote fn the eigenfunction corresponding to λn, n ∈ N+. In what follows,
when no comparison between different eigenvalues/eigenfunctions is made, we will
continue writing simply f , λ instead of fn, λn.

Finally, observe that a scaling argument (with a change of variable; see further)
implies that the spectrum actually depends only on one parameter β := h/a. The
main results will be formulated in terms of the magnitude of this parameter.

6.3 Small Interval (β � 1)

Setting φ (x) := f (ax) for x ∈ (−1, 1), Eq. (6.1) rewrites as

β

π

∫ 1

−1

φ (t)

(x − t)2 + β2
dt = λφ (x) , x ∈ (−1, 1) , (6.5)

Since eigenfunctions are defined up to a multiplicatory constant, for the sake of
determinicity, let us choose this constant to be real and so that ‖φ‖L2(−1,1) = 1.

Observe that the kernel function essentially coincides with [0/2] Padé approxi-
mant of hyperbolic secant function

sech (x) = 1

1 + x2/2
+ O

(
x4

)
, |x| � 1,

hence the formulation (6.5) can be approximated by

∫ 1

−1
sech

(
(x − t)

√
2/β

)
φ (t) dt = πβλφ (x) + O

(
1/β4

)
, x ∈ (−1, 1) ,

(6.6)

and we therefore expect its solutions to be close to those of (6.5) for large β.
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We drop the error term, postponing precise approximation error analysis to a
further paper, and now focus on an eigenvalue problem for the integral operator
on the left of (6.6), which turns out to be again a positive compact self-adjoint
operator on L2 (−1, 1) with a simple spectrum and the same law of decay of
eigenvalues (6.4). However, this seemingly more complicated integral operator
has an advantage over the original one since it belongs to a rather unique family
of convolution integral operators that admit a commuting differential operator
[Gr83, Wi64]: eigenfunctions of an integral operator with the kernel b sin cx

c sinh bx
(with

constants b, c ∈ R ∪ iR) are also eigenfunctions of the differential operator

− d
dx

(
1 − sinh2(bx)

sinh2 b

)
d
dx

+(
b2 + c2

) sinh2(bx)

sinh2 b
with condition of finiteness at x = ±1.

Therefore, taking c = i
√

2/β, b = 2
√

2/β, and denoting μ

2 sinh2
(

2
√

2/β
) an

eigenvalue of the differential operator, we reduce (6.6) to solving a boundary-value
problem for ODE, for x ∈ (−1, 1),

((
cosh

4
√

2

β
− cosh

4
√

2x

β

)
φ′ (x)

)′
+

(
μ − 6

β2

(
cosh

4
√

2x

β
− 1

))
φ (x) = 0

(6.7)

with boundary conditions

φ′ (±1) = ∓
μ + 6/β2

(
1 − cosh

(
4
√

2/β
))

4
√

2β sinh
(

4
√

2/β
) φ (±1) . (6.8)

Alternatively, introducing

ψ (s) :=
φ

(
β

2
√

2
log

[(
e−2

√
2/β − e2

√
2/β

)
s + e−2

√
2/β

])

[(
e−2

√
2/β − e2

√
2/β

)
s + e−2

√
2/β

]1/2 , (6.9)

Equation (6.6) can be brought into a simpler integral equation arising in the context
of singular-value analysis of the finite Laplace transform [BeGt85]

∫ 1

0

ψ (t)

s + t + γ
dt = −π

√
2λψ (s) , s ∈ (0, 1) , (6.10)

with γ := 2e−2
√

2/β . The operator in the left-hand side of (6.10) is a truncated
Stieltjes transform which again, by commutation with a differential operator, can be
reduced to solving an ODE, for s ∈ (0, 1),

(
s (1 − s) (γ + s) (γ + 1 + s) ψ ′ (s)

)′ − (2s (s + γ ) + μ) ψ (s) = 0 (6.11)
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with boundary conditions enforcing regularity of solutions at the endpoints

ψ ′ (0) = μ

γ (γ + 1)
ψ (0) , ψ ′ (1) = − 2 (γ + 1) + μ

(γ + 1) (γ + 2)
ψ (1) . (6.12)

Finally, it is remarkable that if we get back to (??) and Taylor-expand hyperbolic
cosine functions due to smallness of 1/β, we obtain

((
1 − x2

)
φ′ (x)

)′ +
(

μ − 6

β2 x2
)

φ (x) = 0, x ∈ (−1, 1) , (6.13)

an ODE that coincides with the well-studied equation [OsEtAl13, SlPo61] whose

solutions are bounded on [−1, 1] only for special values μn = χn

(√
6

β

)
, n =

N0, and termed as prolate spheroidal (Slepian) wave functions S0n

(√
6

β
, x

)
(with

notation as in [SlPo61]).
Note that even though differential operators presented here have the same

eigenfunctions as integral ones, eigenvalues are different. Once an eigenfunction
φn is obtained, the corresponding eigenvalue of the original integral operator can be
computed as λn = 〈

Pβ

[
χ(−1,1)φn

]
, φn

〉
L2(−1,1)

.

6.4 Large Interval (β � 1)

Let us set ϕ (x) := f (xh) for x ∈ (−a/h, a/h) and, by a change of variable,
rewrite (6.1) as

1

π

∫ 1/β

−1/β

ϕ (t)

(x − t)2 + 1
dt = λϕ (x) , x ∈ (−1/β, 1/β) , (6.14)

Denote B := (−1/β, 1/β), choose normalization ‖ϕ‖L2(B) = 1, and define the
analytic continuation to R of the solution of (6.14) as

ϕ (x) = 1

λπ

∫ 1/β

−1/β

ϕ (t)

(x − t)2 + 1
dt. (6.15)

Then, building up on a transformation introduced in [Gr64], we can prove a non-
evident yet very important result [Po16]

Lemma 1 The analytic continuation of solution of (6.14) given by (6.15) satisfies

∫
R\B

R0 (x − t) ϕ (t) dt = ϕ (x) , x ∈ R, (6.16)
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with

R0 (x) := − sin (x log λ)

tanh (πx)
− 1

π

∞∑
n=1

nλn

n2 + x2 . (6.17)

The parity of solutions (part (b) of Proposition 1) allows reducing an integration
to only one half-line.

Theorem 2 The analytic continuations ϕext (x) := ϕ (x + 1/β) of even/odd
solutions of (6.14) satisfy, for x ∈ R,

∫ ∞

0

[
R0 (x − t) ± R0

(
x + t + 2

β

)]
ϕext (t) dt = ϕext (x) , (6.18)

as well as an integro-differential equation

∫ ∞

0

[
K (x − t) ± K

(
x + t + 2

β

)]
ϕext (t) dt = ϕ′′

ext (x) + log2 λ ϕext (x)

(6.19)

with the kernel function

K (x) := −
(

d2

dx2 + log2 λ

)(
sin (x log λ)

tanh (πx)
+ 1

π

∞∑
n=1

nλn

n2 + x2

)
. (6.20)

Here and onwards the upper sign corresponds to even solutions, the lower to odd
ones.

We note that the first equation, which is a direct rephrasing of Lemma 1, even
though simpler than the integro-differential equation, has a kernel (6.17) with an
oscillatory behavior at infinity whereas K (x) decays. Indeed, it is easy to see that

R0 (x) �|x|�1

sin (x log λ)

tanh (πx)
� sin (|x| log λ) , K (x) �|x|�1

1

x2
.

This decaying property of the kernel function of (6.19) is crucial for construction
of approximation on the right half-line region since the sum part of the kernel
in (6.19) is uniformly small for β � 1 and x, t > 0: K (x + t + 2/β) = O

(
β2

)
.

Neglecting this small term (and thus again postponing tedious error analysis to a
further paper), we end up with an equation of Wiener-Hopf type. Even though the
presence of the derivative prohibits application of a standard Wiener-Hopf method,
this difficulty can still be overcome by means of additional transformation leading to
an explicitly solvable scalar Riemann-Hilbert problem giving thus an exact solution
of the approximate equation. These results presented in greater detail in [Po16]
are summarized here in Theorem 3 below. First of all, however, we should set up
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notations and define few auxiliary quantities, for k ∈ R,

k0 := − log λ

2π
, κ := −π

6
+ 2k0 log

(
e2πk0 − 1

)
+ 1

π
Li2

(
1 − e2πk0

)
,

ˆK (k) = 2π2
(
k2

0 − k2
)
eπ(k0−|k|)

sinh (π (k0 − |k|)) ,

G (k) := k2 − k2
0

2
(
k2 + 1

) [1 + coth (π (|k| − k0))] ,

X± (k) := exp
(
P±

[
log G

]
(k)

) = G1/2 (k) exp

[
± 1

2πi
p.v.

∫
R

log G(τ)

τ − k
dτ

]
,

C (k) := (1 + κ)
(
1 + 4π2k2

0

)
(1 − 2πik)2 − 1 − 4π2k2

0 + 2κ

1 − 2πik

−P+
[

2 (1 − πi·) + κ

(1 − 2πi·)2
ˆK (·)

]
(k) ,

where we defined the Euler dilogarithm/Spence’s function, Fourier transform, and
projection operators on spaces of analytic functions of upper and lower half-planes
as follows:

Li2 (x) := −
∫ x

0

log (1 − t)

t
dt =

∞∑
n=1

xn

n2 ,

F̂ (k) := F [F ] (x) =
∫
R

F (x) e2πikxdx,

P± [F ] (k) := FχR±F−1 [F ] (k) = 1

2
F (k) ± 1

2πi
p.v.

∫
R

F (t)

t − k
dt.

Now we are ready to state the following

Theorem 3 The integro-differential equation
∫ ∞

0
K (x − t) ϕext (t) dt = ϕ′′

ext (x) + log2 λ ϕext (x) , x > 0, (6.21)

possesses the unique solution given by

ϕext (x) = ϕ

(
1

β

)[
e−x (1 + (1 + κ) x) +

∫
R

e−2πikx P+ [C /X−] (k)

4π2
(
k2 + 1

)
X+ (k)

dk

]
.

(6.22)

Moreover, this solution satisfies the endpoint condition ϕ′
ext (0) = κϕext (0).
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Now we reuse Theorem 2 to recover solutions ϕ (x) = ϕext (x − 1/β) inside
the interval B due to the fact that the left-hand side of (6.19) is now computable
from (6.22). This non-homogeneous ODE is easily solvable and depending on a
choice of the sign in the integral term of (6.19) we obtain either even or odd family
of solutions.

We conclude that even eigenfunctions are given by

ϕ (x) /ϕ

(
1

β

)
= C1 (λ, β) cos (x log λ) −

∫ x

0
N+

0 (t, λ, β) sin ((x − t) log λ) dt,

(6.23)

and odd ones by

ϕ (x) /ϕ

(
1

β

)
= C2 (λ, β) sin (x log λ) −

∫ x

0
N−

0 (t, λ, β) sin ((x − t) log λ) dt,

(6.24)

where

C1 (λ, β) := 1

cos
(

1
β

log λ
)

[
1 +

∫ 1
β

0
N+

0 (t, λ, β) sin

((
1

β
− t

)
log λ

)
dt

]
,

C2 (λ, β) := − 1

sin
(

1
β

log λ
)

[
1 +

∫ 1
β

0
N−

0 (t, λ, β) sin

((
1

β
− t

)
log λ

)
dt

]
,

N±
0 (x, λ, β) := 1

2πk0

∫ ∞

0

(
K

(
x − t − 1

β

)
± K

(
x + t + 1

β

))
·

[
e−t (1 + (1 + κ) t) +

∫
R

e−2πikt P+ [C /X−] (k)

4π2
(
k2 + 1

)
X+ (k)

dk

]
dt.

Evaluation of derivatives and use of the boundary condition obtained in Theo-
rem 3 lead to characteristic equations for even and odd eigenvalues, respectively,

κ

log λ
cos

(
1

β
log λ

)
+ sin

(
1

β
log λ

)
= −

∫ 1
β

0
N+

0 (t, λ, β) cos (t log λ) dt,

(6.25)

κ

log λ
sin

(
1

β
log λ

)
− cos

(
1

β
log λ

)
= −

∫ 1
β

0
N−

0 (t, λ, β) sin (t log λ) dt.

(6.26)



L. Baratchart et al.

6.5 Numerical Illustrations

We verify our results of both Sects. 6.3 and 6.4 by comparing them to a numerical
(Nyström) method applied to a rescaled formulation (6.5). We use N = 100 points
Gauss-Legendre quadrature rule to approximate the integral operator

N∑
j=1

ωjpβ

(
x − tj

)
φj = λφ (x) , x ∈ (−1, 1) (6.27)

with ωj := 2
(

1−t2
j

)

N2P 2
N−1(tj )

, PN−1 being a (N − 1)-th Legendre polynomial, and solve

for φj := φ
(
tj

)
, j = 1, . . . , N , the following linear system

N∑
j=1

pβ

(
ti − tj

)
ωjφj = λφi, i = 1, . . . , N. (6.28)

Eigenvalues are found from equating determinant of the system to zero, and
continuous eigenfunctions are then reconstructed from (6.27) as

φ (x) = 1

λ

N∑
j=1

ωjpβ

(
x − tj

)
φj , x ∈ (−1, 1) . (6.29)

Numerical solutions demonstrate properties of a Sturm-Liouville sequence: even
and odd eigenfunctions interlace and each φn, n ∈ N+, has exactly n − 1 zeros.

In the case β � 1, we compare numerical results with prolate spheroidal
wave functions which were computed using a Fortran code provided in [ZhJi96]
and converted into a MATLAB program with the software f2matlab. We see in
Fig. 6.1 that even double approximation (first, by a cumbersome boundary-value

-1 -0.5 0 0.5 1
0.702

0.704

0.706

0.708

0.71

Numerical solution
Asymptotical solution

-1 -0.5 0 0.5 1
-3

-2

-1

0

1

2

3
Numerical solution
Asymptotical solution

Fig. 6.1 Eigenfunctions φ1 (left plot) and φ6 (right plot). β = 10



6 Solution of Love Type Integral Equation

problem (??) and (6.8) and then, proceeding further, by the one with ODE (6.13)
for standard special functions) already furnishes excellent results.

In the case β � 1, we first solve characteristic Eqs. (6.25) and (6.26) by finding
intersection of curves in left- and right-hand sides as function of k0 = − log λ

2π
. They

are plotted in Fig. 6.2 along with vertical lines which correspond to eigenvalues
obtained from the numerical solution described above. Plugging found eigenvalues
back in (6.23) and (6.24), we obtain even and odd family of solutions, respectively.
We plot a couple of eigenfunctions in Fig. 6.3, namely, the third even eigenfunction
and the tenth odd. As in Fig. 6.1, asymptotic solutions are almost indistinguishable
from the numerical, however, Fig. 6.4 shows a breakdown of the asymptotic
approximation for higher-order eigenfunctions (note also the discrepancies between
abscisses of circled intersection points and vertical lines in Fig. 6.2).

More plots of eigenfunctions and approximation errors are available in [Po16].

0.2 0.4 0.6 0.8

-4

-3

-2

-1

0

1

2

Right-hand side
Left-hand side
Asymptotical solution
Numerical solution

0.2 0.4 0.6 0.8

-2

-1

0

1

2

Right-hand side
Left-hand side
Asymptotical solution
Numerical solution

Fig. 6.2 Solving characteristic Eqs. (6.25) (left plot) and (6.26) (right plot). β = 0.1
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0.4

Numerical solution
Asymptotical solution

-10 -5 0 5 10
-0.4

-0.2

0

0.2

0.4

Numerical solution
Asymptotical solution

Fig. 6.3 Eigenfunctions ϕ5 (left plot) and ϕ20 (right plot). β = 0.1
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Fig. 6.4 Inner product matrices for solutions: asymptotic (left plot) and numerical (right plot).
β = 0.1

6.6 Conclusion

We have presented two different methods to construct asymptotic solutions in
cases when the interval is small and large. In the first case we have exploited a
rather specific property of asymptotical closedness of the problem to an integral
equation with an admissible commuting differential operator and concluded that
solutions (eigenfunctions) can be approximated by those coming from either of
two auxiliary Sturm-Liouville problems and, if further approximation is pursued,
they coincide with scaled versions of prolate spheroidal wave functions. In the
second case, when the interval is large, the developed approach is rather general
and should, in principle, be applicable to a wide class of integral equations with
even kernels. Computational details (and simplicity of the form of the kernel for the
integral equation on the half-line), however, will depend on analytical structure of
the Fourier transform of the kernel. This is a natural topic for further investigation.
Also, in the case of the large interval, it is interesting to attempt to extend the
results for λ = −1 (and a non-homogeneous term) recently obtained by Tracy and
Widom [TrWi16b, TrWi18] or those given by a boundary-layer type of asymptotic
constructions in [AtLe83], and compare these results with ours. Moreover, in the
same large interval case, it was proven in [Po16] that Eq. (6.1) can be approximately
reduced to a known non-homogeneous hypersingular equation known in air-foil
theory p.v.

∫ a

−a
f ′(t)
x−t

dt = μf (x)+g (x) which so far has been efficiently solved only
numerically [KaPo50, Tr69]. It seems worthy exploring this connection deeper on
a constructive level. Nevertheless, of the primary importance is to provide rigorous
justification of the obtained results (initiated in [Po16]) which were presented here
heuristically and verified only numerically. This work in progress will soon be
published in a forthcoming paper.
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