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Abstract. We study some approximation problems by functions in the Hardy
space H2 of the upper half-plane or by their real or imaginary parts, with
constraint on their real or imaginary parts on the boundary. Situations where
the criterion acts on subsets of the boundary or of horizontal lines inside the
half-plane are considered. Existence and uniqueness results are established,
together with novel solution formulas and techniques. As a by-product, we de-
rive a regularized inversion scheme for Poisson and conjugate Poisson integral
transforms.
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1. Introduction

Bounded extremal problems in Hardy classes of complex valued analytic functions
have been widely considered in [4, 11, 12, 17] and the references therein and below.
Being given a function on a subset K of the boundary ∂Ω of a set Ω ⊂ C, they
consist in best approximating that function on K by a function in the Hardy space
of Ω, subject to some norm constraint on the complementary set ∂Ω \ K of the
boundary where no data are available. Whenever Ω is the unit disk and K = ∂Ω
is equal to its full boundary (the unit circle), they are similar to classical extremal
problems for analytic functions, see [19, Ch. 8], [21, Ch. IV].

Such constrained best approximation problems arise in the context of system
theory, for harmonic identification purposes and recovery of transfer functions from
partial boundary data, see [13], in Hardy classes of the unit disk (for discrete time
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systems) or of the right-half plane (for continuous time). They also happen to fur-
nish regularized resolution schemes for overdetermined boundary value problems
concerning Laplace or elliptic partial differential equations in domains of dimen-
sion 2, see [16, 23, 27, 29]. In these frameworks, data are provided by approximate
pointwise values (measurements, corrupted by errors) of a function belonging to
some Hardy class or of its real or imaginary part, partially available on a subset of
the domain or of its boundary. From these data, the aim is to recover the function
itself.

Further, properties of Hardy spaces allow to establish stability results of
such inverse problems, as in [15], and robustness properties of the approximation
schemes, as in [22].

Here, we work in the Hilbertian setting and we consider situations where the
domain Ω is the upper half-plane.

One typical example of such a problem is the approximation of a given func-
tion on a segment by traces of analytic functions controlling its behavior on the
complement of the segment. Posed in a half-plane setting, the formulation of this
problem reads as Problem 0 below.

Let Π+ := {x+ iy ∈ C : x ∈ R, y > 0} be the upper half-plane and

H2
+ := H2 (Π+) :=

{
g analytic in Π+ : sup

y>0

ˆ
R

|g (x+ iy)|2 dx < ∞
}

be the Hardy space of Π+ [21, Ch. II] which is similar to H2 (D) (Hardy space for
the unit disk) but not equivalent to it.

We will also identify functions g ∈ H2
+ with their (non-tangential) boundary

values lim
y→0+

g (·+ iy) ∈ L2 (R).

Given real numbers −∞ < ak < bk < ak+1 < bk+1 < ∞, k = 1, . . . , N − 1,

N > 1, let K :=
N⋃

k=1

(ak, bk) ⊂ R and J := R\K. For the sake of explicitness of

constructive aspects, without loss of generality, we simply assume that K = (a, b).

Problem 0. Given functions f0 ∈ L2 (K), h0 ∈ L2 (J), and a constant M0 > 0, find
g0 such that

g0 = arg min
g∈H2

+ , ‖g−h0‖L2(J)≤M0

‖g − f0‖L2(K) .

In this paper, we focus on two particular instances of bounded extremal prob-
lems involving approximation and constraints on real or imaginary parts, Problems
1 and 2, also mentioning some relevant problems.

Problem 1. Given a function f1 ∈ L2 (K), a real-valued function h1 ∈ L2
R
(J), and

a constant M1 ≥ 0, find g1 such that

g1 = arg min
g∈H2

+ , ‖Img−h1‖L2(J)≤M1

‖g − f1‖L2(K) .

In these two problems, both the criterion and the constraint act on the bound-
ary values of H2

+ functions. This is not the case of Problem 2 below, where the
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constraint applies on the boundary values while the criterion applies to the func-
tion on some subset of the upper half-plane.

Let S :=
N⋃

k=1

(ak, bk) ⊂ R, for −∞ < ak < bk < ak+1 < bk+1 < ∞, k =

1, . . . , N − 1, N > 1.
In what follows, we will write “supp” for the support of a function.

Problem 2.Given a real-valued functions f2, h2 ∈ L2
R
(S) and constantsM2, y0 > 0,

find g2 ∈ B2 ⊂ H2
+ such that

g2 = arg min
g∈B2

‖Re g (·+ iy0)− f2‖L2(S) ,

where

B2 :=

{
g ∈ H2

+ : supp lim
y→0+

Re g (·+ iy) ⊂ S,∥∥∥∥ lim
y→0+

Re g (·+ iy)− h2

∥∥∥∥
L2(S)

≤ M2

}
=

{
g ∈ H2

+ : suppRe g ⊂ S, ‖Re g − h2‖L2(S) ≤ M2

}
.

Problem 1 (precisely, its version on a unit disk) was introduced in [23] where it
has been qualitatively analyzed, and its solution has been implicitly characterized
in terms of Toeplitz and Hankel operators, see also [27]. An approximate procedure
based on numerical inversion of finite Toeplitz/Hankel matrices has also been
proposed. As it was noted there, this problem reduces to Problem 0 whose solution
can be explicitly (up to solving some trancendental equation for the value of a
Lagrange parameter) written in an integral form generalizing in some sense a well-
known Carleman formula [1, 26, 31, 34] for the case when h0 �= 0. The obtained
implicit characterization of the solution then reduces to an integral equation on J
with a symmetric kernel which is smooth in the interior of J and bounded at the
endpoints.

Problem 2 arises as a toy (two-dimensional) version of some physical inverse
problems. More precisely, in Earth and planetary sciences, for study in paleomag-
netism, an important inverse problem is to recover the magnetization contained in
thin rock samples from partial measurements of their weak magnetic field, specif-
ically of its normal component, taken on a planar set parallel to and at some
distance of the sample, see [10, 30]. This is actually a three-dimensional issue, that
involve both the Poisson kernel of the upper half-space and its conjugate, and their
truncations to planar subsets (rectangles) of the upper half-space or its boundary.

Even though it has a real part constraint, Problem 2 is of a different type
than Problems 0 and 1 as the approximation is performed on a subset of the
analyticity domain rather than on a part of its boundary (see also Section 3.4).
We show that solution of Problem 2 can be obtained from solution of an auxiliary
integral equation with a simple (Poisson) kernel. Particular cases of the latter
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have been studied over the years. Recently, asymptotic resolution schemes have
been developed for the case when S is a single interval [36], depending on whether
the ratio |S| /y0 is large or small. Solutions are obtained as the eigenfunctions of
the truncated Poisson operator and furnish a suitable basis for computation of
solutions to Problem 2.

Problem 2 and its variation Problem 2′′ (introduced in Section 3.4) can also
be viewed as regularized inversion settings for Poisson and conjugate Poisson trans-
forms [35, 38] of L2 (R) functions supported on S.

In Section 2, we recall the properties of H2
+ that we will need to establish

existence and uniqueness of solutions to Problems 0, 1, 2 in Section 3. In Section 4,
we obtain explicit constructive forms of the solutions. Some concluding comments
are given in Section 5.

2. Properties of Hardy spaces

We list below the basic properties ofH2
+ that will be used for the study of Problems

0, 1, 2, see [2, Sec. 8.6], [19, Ch. 11], [21, Ch. II, III], [24, Ch. 8], [25, Ch. VI].

• Functions in H2
+ possess L2 (R) boundary values that form a closed subspace

of L2 (R) and thus also form a Hilbert space, with the inner product

〈f, g〉L2 =

ˆ
R

f (x) g (x)dx. (2.1)

• Functions inH2
+ are uniquely determined by their boundary values on subsets

of R of positive measure [21, Ch. II, Cor. 4.2], or [24, Ch. 8] (F. and M. Riesz
theorem).

• L2(R) = H2
+ ⊕H2

− (identified with their boundary values) with

H2
− := H2 (Π−) :=

{
g analytic in Π− : sup

y<0

ˆ
R

|g (x+ iy)|2 dx < ∞
}

being the Hardy space of the lower half-plane

Π− := {x+ iy ∈ C : x ∈ R, y < 0} ,

which can be established using Poisson and Cauchy representation formula
[21, Ch. II, Sec. 3], [24, Ch. 8], [25, Ch. VI] (or from Paley–Wiener theorem
[37, Ch. 2]).

For y > 0, let us define the Hilbert transform, the Poisson and conjugate Poisson
transforms H, Py, Qy, respectively, as operators L

2 (R) → L2 (R) by, see [21, Ch.
I, III]:

H [f ] (x) :=
1

π

 
R

f (t)

x− t
dt,

Py [f ] (x) :=
y

π

ˆ
R

f (t) dt

(x− t)
2
+ y2

, Qy [f ] (x) :=
1

π

ˆ
R

(x− t) f (t)

(x− t)
2
+ y2

dt.
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The Hilbert transform H (or the harmonic conjugation operator) is bounded and
isometric in L2(R) (see also Section 3). The projection operators P± from L2(R)
onto H2

± can be written as

P± [f ] (x) = lim
y→0+

(P±y + iQ±y) [f ] (x) = ±1

2
f (x) +

i

2
H [f ] (x)

= ±1

2
f (x) +

1

2πi

 
R

f (t) dt

t− x
,

which can also be seen as Plemelj–Sokhotskii formulas for L2 functions ([20, Ch.
1] and [32, Ch. 2]).

The following density and unstability properties of Hardy functions provide
motivation for bounded extremal problems [28, Lem. 2.1, Prop. 2.2]. Let U ⊂ R,
such that |U | > 0 and |R \ U | > 0.

• The restrictions to U of boundary values of H2
+ functions form a dense subset

of L2(U).
• Let f ∈ L2(U) and gn ∈ H2

+ such that ‖f − gn‖L2(U) → 0; then, either f

coincides with the restriction to U of some H2
+ function, or ‖gn‖L2(R\U) → ∞

as n → ∞.

Note that similar properties for Hardy spacesHp (D) of the unit disk were also
established and used in [4, 11, 12] in order to study bounded extremal problems
similar to Problem 0.

Before passing to the next section, let us adopt a few conventions. We will
denote the characteristic function of any subset U ⊂ R as χU . We will also use
concatenation to construct a function from two complementary subsets of the line,
namely, we write f ∨ h to mean a function which equals f on U ⊂ R and h on
V := R \ U . For simplicity, we will put χU u = u ∨ 0 on R even if u is defined on
U only.

3. Analysis of the problems

We are going to show that the problems formulated above admit a unique solution
which also saturates the constraint under additional assumptions, and mention
some variations of these problems.

3.1. Preliminaries

We will need the following results established in [17, Sec. 2] for complex Hilbert
spaces which remain also true for real Hilbert spaces as only real-linear arguments
were used in the proofs.

Let X , K, J be Hilbert spaces and A : X → K, B : X → J be bounded
linear operators such that there exists a constant η > 0,

‖Ag‖2K + ‖Bg‖2J ≥ η ‖g‖2X , ∀g ∈ X , (3.1)
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Assume that A and B have dense ranges and, for f ∈ K, h ∈ J , M > 0, consider
the nonempty closed convex set:

B = B(h,M) :=
{
g ∈ X : ‖Bg − h‖J ≤ M

}
.

We will write A� and B� for the adjoint operators to A and B, respectively.

Lemma 1. [17, Lem. 2.1] Let f ∈ K, h ∈ J , and M > 0. There exists a solution
g� ∈ X to the bounded extremal problem:

g� = arg min
g∈B

‖Ag − f‖K ,

Moreover, if f �∈ A (B), the solution g� is unique and saturates the constraint:
‖Bg� − h‖J = M .

Lemma 2. [17, Thm. 2.1] Let f ∈ K \ A (B), h ∈ J , and M > 0. The solution to
the bounded extremal problem in Lemma 1 satisfies the operator equation

(A�A+ γB�B) g� = A�f + γB�h, (3.2)

where γ > 0 is the unique constant such that ‖Bg� − h‖J = M .

Remark 3. Note that recovery situations where f ∈ A (B) correspond to Ag� = f ,
the preimage g� ∈ B of f by A being a solution that may not saturate the constraint
(in this case, γ = 0 in equation (3.2)). Uniqueness of g� in this case holds if, and
only if, A|B is injective.

We observe that we can view the complex-linear space H2
+ as a real-linear

Hilbert space with the inner product 〈f, g〉L2
R

= Re 〈f, g〉L2 , where 〈f, g〉L2 is

as in (2.1) for f , g ∈ H2
+. Indeed, because harmonic conjugation is realized by

the Hilbert transform operator H, the Hardy space H2
+ can be represented as

(1 + iH)L2 (R). The latter complex-linear space is isomorphic to the real-linear
space (1 + iH)L2

R
(R). To see this, take an arbitrary function F = ReF + iImF ∈

L2 (R), and using the operator identity HH = −1, we proceed as

(1 + iH)F = (1 + iH)ReF + (i−H) ImF = (1 + iH)ReF −H (1 + iH) ImF

= (1 + iH) (ReF −H [ImF ]) .

Now, if we decompose F = F+ + F− with F± ∈ H2
±, we note that ReF+ =

−H [ImF+] and ReF− = H [ImF−], and therefore,

(1 + iH)F = 2 (1 + iH)ReF+.

We thus established that H2
+ is isomorphic to the real-linear space (1 + iH)L2

R
(R)

which is further isomorphic to the real vector-function space H2
+ := (1, H)

T
L2
R
(R)

⊂ L2
R
(R)× L2

R
(R) with the inner product

(w1, w2)L2
R

= 〈u1, u2〉L2 + 〈Hu1,Hu2〉L2 = 2 〈u1, u2〉L2 ,

wk = (uk,Huk)
T ∈ H2

+, uk ∈ L2
R
(R) , k = 1, 2,



Some Extremal Problems for Analytic Functions with Constraints 225

where the isometric property of the Hilbert transform was taken into account. On
the other hand, by the same property, we have, for f, g ∈ H2

+,

〈f, g〉L2
R

= Re 〈f, g〉L2 = 〈Re f, Re g〉L2 + 〈Im f, Im g〉L2 = 2 〈Re f, Re g〉L2 ,

which, upon identification u1 ↔ Re f , u2 ↔ Re g, justifies the use of the real inner
product.

3.2. Problems 0 and 1: solution existence and uniqueness

We establish existence and uniqueness properties for solutions to Problems 0 and
1, beginning with Problem 0.

Theorem 4. Problem 0 admits a unique solution g0. Moreover, if

f0 �∈
{
g ∈ H2

+ , ‖g − h0‖L2(J) ≤ M0

}∣∣∣
K
,

then it saturates the constraint: ‖g0 − h0‖L2(J) = M0.

Proof. Here, we consider H2
+ as a Hilbert space with the complex inner product

(2.1) and define the bounded linear operators A0 : H2
+ → L2 (K), B0 : H2

+ →
L2 (J) as restrictions to K and J , respectively, of H2

+ functions. Clearly, both
A0 and B0 are bounded linear operators, and because of the density property of
restrictions of boundary values of H2

+ functions (recall Section 2), we see that these
operators have dense ranges and that the approximation set is not empty. Also,
since K and J are complementary sets, we have, for all g ∈ H2

+,

‖A0g‖2L2(K) + ‖B0g‖2L2(J) = ‖g‖2L2(R) ,

and hence (3.1) holds true with η = 1. Therefore, Lemma 1 implies existence of
the solution which, by Lemma 2, is unique and saturates the constraint if f0 �∈{
g ∈ H2

+ , ‖g − h0‖L2(J) ≤ M0

}∣∣∣
K
.

Finally, if f0 ∈
{
g ∈ H2

+ , ‖g − h0‖L2(J) ≤ M0

}∣∣∣
K
, Remark 3 is to the effect

that uniqueness still holds. Indeed, A0 is injective on H2
+, because H2

+ functions
cannot vanish on the set K of positive Lebesgue measure unless they identically
vanish. �

For the above proof, observe that we could also proceed as in [37] using [28]
and the orthogonal decomposition L2(R) = H2

+ ⊕H2
−.

We now turn to Problem 1.

Theorem 5. Problem 1 admits a unique solution g1. Moreover, if

f1 �∈
{
g ∈ H2

+ , ‖Im g − h1‖L2(J) ≤ M1

}∣∣∣
K
,

then it saturates the constraint: ‖Im g1 − h1‖L2(J) = M1.
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Proof. Considering the equivalent real Hilbertian structure for H2
+ discussed in

Section 3.1, we can prove Theorem 5 using Lemmas 1 and 2. Let the operator
A1 = A0 be as in the proof of Theorem 4 and B1: H

2
+ → L2

R
(J) be the imaginary

part of the restriction to J of H2
+ functions, which, clearly, is also a bounded

linear operator. As for Problem 0, A1 has dense range property, so is the case for
B1 (in fact, B1 is surjective: for any h ∈ L2

R
(J), we can construct the function

(−H [χJh] + i (χJh)) ∈ H2
+). Further, the approximation set is not empty and

property (3.1) holds for all g ∈ H2
+ with B = B1. Indeed, for g ∈ H2

+, because Img
is the conjugate function of Re g and Hilbert transform is an isometry on L2(R),
we get

‖A1g‖2L2(K) + ‖B1g‖2L2(J) = ‖g‖2L2(K) + ‖Im g‖2L2(J)

= ‖Re g‖2L2(K) + ‖Im g‖2L2(R) ≥
1

2
‖g‖2L2(R) ,

whence (3.1) holds true with η =
1

2
. If f1 �∈

{
g ∈ H2

+ , ‖Im g − h1‖L2(J) ≤ M1

}∣∣∣
K
,

then Lemmas 1, 2 again directly lead to the results.

If f1 ∈
{
g ∈ H2

+ , ‖Im g − h1‖L2(J) ≤ M1

}∣∣∣
K
, we argue as at the end of the

proof of Theorem 4 using Remark 3. �
For proving Theorems 4, 5, other possibilities consist in using best approx-

imation projections on closed convex subsets of a Hilbert space as in [23], or
weak-compactness arguments as in [11].

3.3. Problem 2: solution existence and uniqueness

We now consider Problem 2.

Theorem 6. Problem 2 admits a unique solution g2, i.e., there exists a unique
function g2 ∈ B2 ⊂ H2

+ such that

g2 = arg min
g∈B2

‖Re g (·+ iy0)− f2‖L2(S) .

Moreover, if f2 �∈ ReB2|S×{y0}, then g2 saturates the constraint: ‖Re g2 − h2‖L2(S)

= M2.

Proof. As in the proof of Theorem 5, we view H2
+ as a real-linear Hilbert space

with the inner product 〈f, g〉L2
R

= Re 〈f, g〉L2 for f , g ∈ H2
+. Consider the subspace

T :=
{
g ∈ H2

+ : suppRe g ⊂ S
} ⊂ H2

+,

which is closed, and hence is a Hilbert space on its own account.
Define the bounded linear operators A2 : T → L2

R
(S), B2 : T → L2

R
(S) as

A2g (·) = Re g (·+ iy0) = Py0
[Re g] (·) and

B2g (·) = lim
y→0+

Re g (·+ iy) = Re g (·) on S.

Note that B2 is surjective, as discussed in the proof of Theorem 5. To verify that
A2 has a dense range, it is enough to show that it is the case for the same map
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when its domain of definition is L2
R
(S). The latter is an operator still given by

Py0 which is now a self-adjoint operator (as a convolution operator with an even
kernel) on L2

R
(S). Hence, to show the density of its range, it is enough to check

its injectivity. The injectivity can be deduced from the non-vanishing property
of harmonic functions on non-empty open subsets of the domain of harmonic-
ity [6, Thms 1.27, 1.28] (note that ReB2 consists of functions harmonic in Π+).
Combined with the density of Re T |S in L2

R
(S) (given f ∈ L2

R
(S), we construct

(fχS + iH [fχS ]) ∈ T ), this leads to the dense range property of A2. The fact that
(3.1) is satisfied by A2 and B2 can easily be checked, for g ∈ T ,

‖Re g (·+ iy0)‖2L2(S) + ‖Re g‖2L2(S) ≥ ‖Re g‖2L2(S) = ‖Re g‖2L2(R) =
1

2
‖g‖2L2(R) ,

as in the proof of Theorem 5. Therefore, Lemmas 1 and 2 again furnish the proof
whenever f2 �∈ ReB2|S×{y0}.

Finally, if f2 ∈ ReB2|S×{y0}, thanks again to Remark 3, g2 is unique for A2

is injective (as discussed in the previous paragraph). �

Observe that in the present two-dimensional case, Theorems 4, 5 still hold
whenever K is a more general set of finite positive Lebesgue measure [4, 11, 23].
This should also be the case for Theorem 6 if S is of finite positive Lebesgue
measure, see [7].

3.4. More about Problems 1 and 2

Note that Problem 1 is equivalent to a similar one, Problem 1′, with the constraint
acting on Re g (multiplying by ±i the function f1 and the approximant g): given a
function f1 ∈ L2 (K), a real-valued function h1 ∈ L2

R
(J), and a constant M1 ≥ 0,

find g′1 such that

g′1 = arg min
g∈H2

+ , ‖Re g−h1‖L2(J)≤M1

‖g − f1‖L2(K) .

In Problem 1, situations when M1 = 0 could be analyzed as they correspond to the
constraint Img = h1 a.e. in K, or Re g = h1 if we discuss its Problem 1′ version. In
this case, solutions g′1 ∈ H2

+ are such that on R, g′1 = (1 + iH) [φ1 ∨ h1] for some
φ1 ∈ L2

R
(K), i.e., we look for φ1 such that

φ1 = arg min
φ∈L2

R
(K)

‖f1 − φ− iH [φ ∨ h1]‖L2(K) .

The above Problem 1′ is related to the following Problem 3 (see also [27, Prob.
2.2]). Given real-valued functions f3 ∈ L2

R
(K), h3 ∈ L2

R
(J), and a constant M3 ≥

0, find g3 such that

g3 = arg min
g∈H2

+ , ‖Re g−h3‖L2(J)≤M3

‖Re g − f3‖L2(K) .

It is interesting to compare Problems 2 and 3, and to point out the links and
differences between their criteria and constraints. Indeed, with S = J , h2 = h3,
and M2 = M3, the approximation set B2 in Problem 2 is a strict subset of the
one in Problem 3, because of the additional constraint on the support of the real
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part of the approximant in Problem 2. A notable difference between them is that
in Problem 2, the criterion acts on the subset S × {y0} of Π+ while in Problem 3
it acts on the part K = R \ J of the boundary R.

Concerning Problem 2, note that T = (Py + iQy) [χSu] for u ∈ L2
R
(S)

(whence T |
R
= (1 + iH) [χSu]) and B2 = (Py + iQy) [χSu] for u ∈ L2

R
(S) such

that ‖u− h2‖L2(S) ≤ M2. Then, Problem 2 rephrases as the one of finding u2

solution to

u2 = arg min
u∈L2

R
(S) , ‖u−h2‖L2(S)≤M2

‖Py0 [χSu]− f2‖L2(S) ,

where only the restriction to S of Py0
[χSu] is involved in the above criterion. In

particular, forM2 = 0, this furnishes the unique solution g2 = (Py + iQy) [χSh2] to
Problem 2 (which necessarily saturates the constraint and is equal to (1+iH)[χSh2]
on R). For M2 > 0, we can see that f2 ∈ Re B2|S×{y0} if and only if f2 = Py0 [χSu]

on S, for some u ∈ L2
R
(S) such that ‖u− h2‖L2(S) ≤ M2. This reformulation

shows that Problem 2 is, in fact, nothing but a regularization scheme for inversion
of Poisson transform [35] on L2 (S).

This also furnishes another equivalent setting for establishing well-posedness
of Problem 2, yet appropriate for Lemmas 1, 2. One can also make use of [14, Thm
5.2] in order to show that there exists γ > 0 such that

u2 = arg min
u∈L2

R
(S)

(
‖Py0 [χSu]− f2‖2L2(S) + γ ‖u− h2‖2L2(S)

)
.

The saturation of the constraint then implies by differentiation that

〈Py0
[χSu2]− f2 , Py0

[χSϕ]〉L2(S) + γ 〈u2 − h2 , ϕ〉L2(S) = 0, ∀ϕ ∈ L2 (S) ,

for γ such that ‖u2 − h2‖L2(S) = M2.

We also note that Problem 2 is equivalent to the following Problem 2′ (mul-
tiplying by ±i the functions f2, h2 and the approximant g): given real-valued
functions f2, h2 ∈ L2

R
(S), find g′2 such that

g′2 = arg min
g∈B′

2

‖Im g (·+ iy0)− f2‖L2(S) ,

where

B′
2 :=

{
g ∈ H2

+ : supp Im g ⊂ S, ‖Im g − h2‖L2(S) ≤ M2

}
.

Another interesting variation of Problem 2 involves both real and imaginary parts.
Namely, we introduce Problem 2′′: given real-valued functions f2, h2 ∈ L2

R
(S), and

the set B2 as in Problem 2, find g′′2 such that

g′′2 = arg min
g∈B2

‖Im g (·+ iy0)− f2‖L2(S) .

The only difference in the treatment of this problem with respect to Problem 2 is
the replacement of A2 by the bounded linear operator A′′

2 : T → L2
R
(S) acting as

A′′
2g (·) = Im g (·+ iy0) = Qy0 [Re g] (·) on S.
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In order to deduce existence and uniqueness of the solution, we only have to verify
the range density property (the proof that (3.1) is satisfied is exactly the same as
for Problem 2). Since Qy0χS = HPy0χS , it follows directly from the facts that the
range of Py0

χS is dense in L2
R
(S) and that H is surjective.

4. Computation of solutions

4.1. Problem 0

A version of this problem for the unit disk has been considered in [4]. In [11],
its solution has been obtained in an explicit integral form in terms of the so-
called quenching function arising from the Goluzin–Krylov method (a Carleman
formula) for the recovery of analytic functions from their partial boundary values
[1, 26, 31, 34]. We obtain an analogous integral formula using reduction to a
Riemann-Hilbert problem [20, 32], which further allows us to treat Problem 1.

In order to make use of Lemma 2 for the characterization of the solution,
we compute the adjoint operators A�

0: L
2 (K) → H2

+, B
�
0 : L2 (J) → H2

+. Letting
g ∈ H2

+, φ ∈ L2 (K), we have

〈A0g, φ〉L2(K) = 〈A0g, χKφ〉L2 = 〈g, P+χKφ〉L2 ,

yielding A�
0 =P+χK , and similarly, B�

0 = P+χJ .
Equation (3.2) then leads to the critical point equation that must be satisfied

by the solution g0 to Problem 0:

P+ [(1 + (γ0 − 1)χJ) g0] = P+ (f0 ∨ γ0h0) , (4.1)

where the parameter γ0 > 0 is chosen such that ‖g0 − h0‖L2(K) = M0.

Equation (4.1) can be rewritten as

(1 + (γ0 − 1)χJ) g0 = (f0 ∨ γ0h0) + ψ

with some unknown function ψ ∈ H2
−. Equivalently,

γ0g0 = Gψ + L, (4.2)

where G ∈ L∞(R) and L ∈ L2(R) are defined by:

G (x) :=
γ0

1 + (γ0 − 1)χJ (x)
=

{
1, x ∈ J,

γ0, x ∈ K,

L (x) := G (x) (f0 ∨ γ0h0) (x) = γ0 (f0 ∨ h0) (x) .

Since γ0g0 ∈ H2
+ and ψ ∈ H2

−, equation (4.2) is a Riemann–Hilbert problem.
The standard resolution procedure (see, for instance, [20, Ch. 2] or [32,

Ch. 5]) requires factorizing the coefficient of the problem G as G = G+/G−
with zero-free functions G+ and G− analytic in the upper and lower half-planes,
respectively. To construct such a factorization, we consider the decomposition
logG = logG+ − logG− which can be achieved by Plemelj–Sokhotskii formu-
las applied to the Cauchy integral of logG. Due to its vanishing at infinity and to
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the positivity of G, this integral is well defined, except at the endpoints x = a, b
of K where it is merely bounded. Indeed,

logG± (x) = lim
y→0±

ˆ
R

logG (t)

t− (x+ iy)
dt = ±1

2
log γ0χK (x) +

log γ0
2πi

 
K

dt

t− x

=

⎧⎪⎪⎨⎪⎪⎩
1

2πi
log γ0 log

(
x− a

x− b

)
, x ∈ J,

±1

2
log γ0 +

1

2πi
log γ0 log

(
a− x

x− b

)
, x ∈ K,

where the branches of logarithms in both expressions are real-valued on J and K,
respectively. Therefore,

G± (x) = elogG±(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
x− a

x− b

) 1
2πi log γ0

, x ∈ J,

±√
γ0

(
a− x

x− b

) 1
2πi log γ0

, x ∈ K,

(4.3)

are the boundary values on R, from above and below, of the Cauchy integral

G (z) = elogG(z) = exp

[
1

2πi

ˆ
R

logG (t) dt

t− z

]
.

Equation (4.2) now becomes

γ0g0/G+ − ψ/G− = L/G+,

which is a jump problem since in the left-hand side we have the difference of H2
+

and H2
− functions and the right-hand side is in L2 (R).
To solve this jump problem, we consider the Cauchy integral

Y (z) =
1

2πi

ˆ
R

L (t)

G+ (t)

dt

t− z

and, by Plemelj–Sokhotskii formulas,

Y± (x) = ±1

2

L (x)

G+ (x)
+

1

2πi

 
R

L (t)

G+ (t)

dt

t− x
,

we have, for x ∈ R, x �= a, b,

L (x) /G+ (x) = Y+ (x)− Y− (x) .

This leads to

γ0g0/G+ − Y+ = ψ/G− − Y−,
from which we deduce that both left- and right-hand sides are restrictions to R of
one entire function. Since both g0/G+ and Y+ decay at infinity in the upper half-
plane, by Liouville theorem, we conclude that this entire function is identically
zero. This entails that, for x ∈ R,

g0 (x) =
1

γ0
G+ (x)Y+ (x) =

1

2γ0
L (x) +

G+ (x)

2γ0πi

 
R

L (t)

G+ (t)

dt

t− x
, (4.4)
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and, for z ∈ Π+,

g0 (z) =
1

γ0
G (z)Y (z) =

G (z)

2γ0πi

ˆ
R

L (t)

G+ (t)

dt

t− z
. (4.5)

4.2. Problem 1

According to [23, Prop. 5 (i)], the solution g1 to Problem 1 also solves Prob-
lem 0 with f0 = f1, h0 = ih1 + Re g1 and γ0 = γ1 > 0 chosen such that
‖Im g1 − h1‖L2(J) = M1.

Applying the above formulas (4.4)-(4.5), we arrive at

g1 (x) =
1

2
Re g1 (x) +

G+ (x)

2πi

 
J

Re g1 (t) dt

G+ (t) (t− x)
+ F0 (x) , x ∈ J, (4.6)

g1 (x) =
1

2
f1 (x) +

G+ (x)

2πi

[ 
K

f1 (t) dt

G+ (t) (t− x)
+

ˆ
J

(Re g1 (t) + ih1 (t)) dt

G+ (t) (t− x)

]
,

x ∈ K, (4.7)

g1 (z) =
G+ (z)

2πi

[ˆ
K

f1 (t) dt

G+ (t) (t− z)
+

ˆ
J

(Re g1 (t) + ih1 (t)) dt

G+ (t) (t− z)

]
, z ∈ Π+, (4.8)

where

F0 (x) :=
i

2
h1 (x) +

G+ (x)

2π

 
J

h1 (t) dt

G+ (t) (t− x)
+

G+ (x)

2πi

ˆ
K

f1 (t) dt

G+ (t) (t− x)
, x ∈ J.

Observe that the solution expressions (4.7)-(4.8) will be complete once the involved
values of Re g1 on J are known. The latter can, in principle, be found from the
solution of the integral equation obtained from (4.6) by taking real parts and using
the fact that G+ = 1/G+

Re g1 (x) =
1

2πi

ˆ
J

Re g1 (t)

t− x

(
G+ (x)

G+ (t)
− G+ (t)

G+ (x)

)
dt+ 2ReF0 (x) , x ∈ J.

Note that the integral equation for Re g1 has a regular symmetric kernel

K (x, t) :=
1

x− t

(
G+ (x)

G+ (t)
− G+ (t)

G+ (x)

)
=

G+ (x)−G+ (t)

x− t

(
G+ (x) +G+ (t)

G+ (x)G+ (t)

)
,

whose smoothness is seen from (4.3). Indeed, G+ is non-vanishing and smooth
(except at the endpoints where it still remains bounded), which eliminates the
zero of the denominator at t = x in the first factor. This makes the obtained
integral equation amenable to effective numerical resolution.

4.3. Problem 2

Let us compute the adjoint operators A�
2 : L2

R
(S) → T , B�

2 : L2
R
(S) → T .
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For g ∈ T , φ ∈ L2
R
(S), using that Py0

is a self-adjoint operator (as a convo-
lution integral operator with even kernel), we have:

〈A2g, φ〉L2(S) = Re 〈Py0
g, χSφ〉L2 = Re 〈g, Py0

χSφ〉L2 = 〈Re g, Py0
χSφ〉L2(S)

= Re 〈g, χSPy0
χSφ〉L2 = 〈g, P+χSPy0

χSφ〉L2
R

,

〈B2g, φ〉L2(S) = Re 〈g, χSφ〉L2 = 〈g, P+χSφ〉L2
R

,

and hence A�
2 = P+χSPy0

χS , B
�
2 = P+χS .

The characterization (3.2) of the solution g2 now reads

P+χSPy0χSPy0Re g2 + γ2P+χSRe g2 = P+ [χSPy0χSf2 + γ2χSh2] ,

where the parameter γ2 > 0 is chosen such that ‖Re g2 − h2‖L2(S) = M2.

This implies

χSPy0χSPy0Re g2 + γ2χSRe g2 = χSPy0χSf2 + γ2χSh2 + ψ,

with some function ψ ∈ H2
−. However, since all the terms in the equation vanish

outside of the set S and so must do ψ, but since |R\S| > 0, this vanishing is
prohibited by analyticity unless ψ ≡ 0 which is what we have to conclude. We
thus arrive at the double integral equation on S[

(Py0
χS)

2
+ γ2

]
Re g2 = Py0

χSf2 + γ2h2, (4.9)

which can be solved, for example, in terms of eigenfunction expansion for the com-
pact self-adjoint operator f �→ [Py0

χS f ]|S on L2
R
(S) considered in [36, Part II].

Indeed, this operator is compact (due to regularity of the kernel and boundedness
of S) and self-adjoint, hence the spectral theorem for linear compact self-adjoint
operators [33, Thm 6.11.1] implies the existence of a set of mutually orthogonal
basis functions (φn)

∞
n=0 in L2

R
(S) and a set of numbers (λn)

∞
n=0 ⊂ R such that

Py0
[χSφn] (x) =

y0
π

ˆ
S

φn (t)

(x− t)
2
+ y20

dt = λnφn (x) , x ∈ S. (4.10)

In [36, Part II], equation (4.10) was solved asymptotically when S is a finite inter-
val.

Expanding both the solution Re g2 and the right-hand side of (4.9) over
eigenfunctions φn and assuming, without loss of generality, that their L2(S) norms
are normalized to one, we conclude

Re g2 (x) =

∞∑
n=0

1

λ2
n + γ2

〈Py0
χSf2 + γ2h2, φn〉L2(S) φn (x) . (4.11)

This allows us to determine the parameter γ2 from ‖Re g2 − h2‖L2(S) = M2, that

can now be rewritten as (upon expansion of h2 over φn):

∞∑
n=0

[〈
1

λ2
n + γ2

(Py0
χSf2 + γ2h2)− h2, φn

〉
L2(S)

]2

= M2
2 . (4.12)
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Then, for z = x+ iy ∈ Π+, the solution to Problem 2 is given by

g2 (x+ iy) =
1

2
(Py + iQy) [χSRe g2] (x) . (4.13)

4.4. Problem 2′′

The resolution procedure can be repeated in the same way as for Problem 2 in
Section 4.3; however, we now have (A′′

2)
�
= −P+χSQy0

χS . Therefore, equations
(4.9)-(4.13) get replaced, respectively, by[

(Qy0χS)
2 − γ′′

2

]
Re g′′2 = Qy0χSf2 − γ′′

2h2,

Qy0
[χSϕn] (x) =

1

π

ˆ
S

(x− t)ϕn (t)

(x− t)
2
+ y20

dt = λnϕn (x) , x ∈ S,

Re g′′2 (x) =

∞∑
n=0

1

λ2
n − γ′′

2

〈Qy0
χSf2 − γ′′

2h2, ϕn〉L2(S) ϕn (x) ,

∞∑
n=0

[〈
1

λ2
n − γ′′

2

(Py0
χSf2 − γ′′

2h2)− h2, ϕn

〉
L2(S)

]2

= M2
2 ,

g′′2 (x+ iy) =
1

2
(Py + iQy) [χSRe g

′′
2 ] (x) , x+ iy ∈ Π+,

the logic remains precisely the same except that the existence of complete set of
eigenfunctions ϕn and eigenvalues λn of Qy0

χS is still guaranteed by the spectral
theorem for compact normal operators (note that f �→ [Qy0

χS f ]|S is a compact

anti-self-adjoint operator on L2
R
(S)) [33, Thm 6.11.1].

5. Conclusion

Observe that in the particular situations where the function to be approximated
already belongs to the approximant class, the above bounded extremal problems 0
and 1 coincide, in the absence of constraint, with recovery or extrapolation issues as
in the works [1, 26, 34], and with a constraint, to Loewner-type interpolation issues
as in [3]. It would be interesting to study similar interpolation / extrapolation
issues related to Problem 2, for which the behaviour of the error (criterion) with
respect to the constraint must be further analyzed as well. This should go together
with numerical computation of the solutions.

Generalizations of Problem 2 to situations involving also the conjugate Pois-
son kernel are under study. This is also the case of some extensions of Problem 2 in
the three-dimensional case, see [8] and [36, Part III]. Note that three-dimensional
versions of Problem 0 have been considered in Hardy classes of harmonic gradients
in spherical domains [5], while Hardy classes of the upper half-space are studied
and used in [10].

Finally, observe that Problem 2 still makes sense in Hardy classes of general-
ized analytic (or pseudo-holomorphic) functions, as does Problem 0, see [9]. This
deserves further study.
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