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Abstract. We consider the problem of reconstruction of the net moment (vector of the overall magnetisation) of
a sample from partial data of the magnetic field. Namely, motivated by a concrete experimental set-up, we deal
with a situation when the magnetic field is measured on a portion of the plane in vicinity of the sample and only
one (normal to the plane) component of the field is available. Under assumption that the measurement area is a
sufficiently large disk (lying in a horizontal plane above the sample), we obtain a set of estimates for the components
of the net moment vector with the accuracy which improves asymptotically with the increase of the measurement
disk radius. Compared to our previous preliminary results, the asymptotic formulas are now rigorously justified
and higher-order estimates are derived. Moreover, the presented approach, based on an appropriate splitting in the
Fourier domain and estimates of oscillatory integrals (involving both small and large parameters), elucidates the
derivation of asymptotic estimates of an arbitrary order, a possibility that was previously unclear. The obtained
results are illustrated numerically and their robustness with respect to noise is discussed. The proposed methodology
should be applicable to other magnetic and gravimetric problems with planar measurements.

1. Introduction

Constant advances in magnetometry allow measurements of magnetic fields of very low intensities with high
spatial resolution. In particular, this opens new horizons in paleomagnetic contexts. Ancient rocks and meteorites
possess remanent magnetisation and thus might preserve valuable records of a past magnetic activity on Earth and
other planets, asteroids and satellites. Extraction of this relict magnetic information is a lucrative but challenging
task. Deducing magnetisation of a geosample hinges on effective processing of the measurements of the magnetic
field available in a nearest neighbourhood of the sample since the informative part of the field further away is very
weak and significantly deteriorated by noise. In particular set-ups of scanning SQUID (Superconducting Quantum
Interference Device) magnetometer or QDM (Quantum Diamond Microscope), measurements are available in a
planar area above the sample, in a close vicinity of it, and such measurements typically feature only one component
of the magnetic field. This is in contrast with more common settings that deal with magnetic fields of higher
intensity and hence could, on a methodological level, rely on the classical dipolar approximation of a sample valid
in a far-away region.

In the present work, we are concerned with recovery of the overall magnetisation (the so-called net moment)
of a sample rather than dealing with reconstruction of the entire magnetisation distribution. While both inverse
problems are known to be ill-posed (as an inverse source problem for elliptic partial-differential equations) due to
the lack of continuous dependence of their solution on the input data (magnetic field measurements), the problem
of reconstruction of full magnetisation distribution additionally lacks uniqueness of the solution in view of presence
of invisible (or “silent”) sources, i.e., magnetisations that do not produce magnetic field, see [4]. However, as it
was shown in [2] for planar (thin-plate) magnetisation distributions, and as follows from the general Helmholtz
decomposition [7], compactly supported invisible sources do not contribute to the net moment. This statement
fixes the non-uniqueness issue and makes the problem of net moment recovery a feasible task. In theory, this
problem is even solvable in a closed form when measurements are available on the entire plane above the sample.
In reality, however, the measurements are very limited and corrupted by the presence of noise which dominates
the signal in distant regions. Therefore, we arrive at the problem of estimating the net moment of a sample from
a magnetic field component available on some portion of the plane in proximity of the sample. We shall assume
that this portion of the plane is sufficiently large, for otherwise the instability of the problem, due to the already
mentioned inherent ill-posedness, will be even more severe. On the other hand, this assumption on the large size of
the measurement area allows us to obtain explicit ready-to-use formulas.

We do not intend here to provide neither physical nor mathematical description of the problem in any detailed
fashion. Instead, we refer the reader to the set of previous publications [4, 13, 2, 6, 15, 10, 26, 14] and briefly
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Figure 1.1. Schematic illustration of geometry of the problem arising from experimental set-up
in the Paleomagnetism lab at EAPS, MIT (USA). B3 is a vertical component of the magnetic field
measured over the horizontal disk DA at some distance h from a sample Q with the magnetisation
distribution ~M.

introduce basic concepts that allow us to be more specific in describing our main result and comparing it with
relevant works.

We should mention that the present setting is somewhat classical for problems in magnetometry or gravimetry
(i.e., detection of underground anomalous region from surveillance data), with a particularity here that only one
component is available for direct measurements. The obtained results hence should be useful beyond the laboratory
context of rock paleomagnetism, and the proposed methodology is clearly extendable to other particular set-ups.

We assume that the magnetic sample is described by a compactly supported vector distribution
~M (~x) ≡ (M1 (x1, x2, x3) ,M2 (x1, x2, x3) ,M3 (x1, x2, x3))

T
, supp ~M⊂ Q,

with some bounded set Q ⊂ R3.
The relation between the unknown magnetisation distribution ~M and the vertical component of the produced

magnetic field is

(1.1) B3 (~x) =
∂

∂x3

∫∫∫
Q

1

4π
∣∣~x− ~t∣∣∇ · ~M (

~t
)

d3t, ~x ∈ R3\Q.

This latter quantity is experimentally measured on a portion of the horizontal plane at height x3 = h for some
constant h > 0 such that this plane does not intersect Q, and it can be equivalently written as

B3 (x, h) =

∫∫∫
Q

3 (h− t3) [M1 (t, t3) (x1 − t1) +M2 (t, t3) (x2 − t2)] +M3 (t, t3)
(
2 (h− t3)2 − |x− t|2

)
4π
(
|x− t|2 + (h− t3)2

)5/2 d3t.(1.2)

Here and onwards, we employ bold symbols to denote R2 vectors, e.g., x ≡ (x1, x2)
T while using ~x ≡ (x1, x2, x3)

T

for R3 vectors. When ~M is a distribution, the integral on the right-hand side of (1.2) should be understood as
a sum of three terms, each is the duality pairing of a compactly supported scalar distribution M1, M2 or M3

with the corresponding smooth function on R3 (note that since the measurement plane does not intersect Q, the
denominator is bounded away from zero and thus no singularities arise).

The geometry of the described setting is schematically shown in Figure 1.1. This corresponds, up to a truncation
of rectangular magnetic field map, to an experimental set-up of the Paleomagnetism lab at EAPS (Earth, Atmo-
spheric and Planetary Sciences) department, MIT (Massachusetts Institute of Technology), involving a SQUID
magnetometer, see [26]. Moreover, with an extra preprocessing step of the field data, this also extends to the QDM
magnetometer set-up used in the Paleomagnetism lab at Harvard University [10].

A quantity of basic physical interest is the net magnetisation moment:

(1.3) ~m ≡ (m1,m2,m2)
T

:=

∫∫∫
Q

~M (~x) d3x.
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This is a constant R3 vector equal to the overall magnetisation of the sample which can be determined uniquely,
unlike the full magnetisation distribution ~M which essentially enters B3 through ∇ · ~M and hence can be changed
by any divergence-free vector field without altering B3, see (1.1) and discussions in [4]. In what follows, we may
intechangeably use slightly different names for ~m: net moment, net magnetisation, zeroth-order algebraic moment
of a magnetisation distribution. When ~M is not a regular function but a distribution, the integral in (1.3) should be
understood componentwise as the duality pairing of a compactly supported distribution with the constant function
1 on R3: mj = 〈Mj , 1〉, j ∈ {1, 2, 3}.

The present paper is dedicated to the explicit asymptotic estimation of the net magnetisation moment ~m from
measurements of the magnetic field B3 over a large planar area. In particular, as the measurement area, we have
taken the horizontal disk DA of radius A located at height h above the magnetic sample. We formally derive
and prove that each of the quantities m1, m2 and m3 can be estimated by means of integration of the measured
magnetic field data B3 on DA against an appropriate function. We obtain several of such estimates depending on
the asymptotic order (up to order 5 for m1, m2, and up to order 4 for m3), though this process could be continued
to obtain even higher order estimates. As it will be discussed, higher-order estimates do not make those of lower
order redundant because of different level of sensitivity to noise which is unavoidable in any realistic setting.

It should be mentioned that even though recovery of the net moment of a sample, our primary concern, is an
important practical problem on its own right, it can also serve, under appropriate assumptions, as a preliminary
step for the full magnetisation inversion (i.e., finding a magnetisation distribution ~M that would be consistent with
the measured data B3 according to (1.2)). Indeed, while it is unrealistic to retrieve three generally independent
magnetisation components (functions or, more generally, distributions),M1,M2,M3, from the partial knowledge
of only one function B3 (see (1.2)) without additional assumptions, the problem simplifies significantly for a class
of samples which are unidirectionally magnetised (i.e., when magnetisation direction does not change throughout
the sample but its magnitude does). Since quantifying the net moment of a sample implies a definite magnetisation
direction, it is thus an essential element in this complete reconstruction procedure, see [13].

Note that the obtained estimates may be used either directly on the data when the original measurement area is
sufficiently large compared to the localisation of the magnetisation in the sample and the lift-off distance (scanning
height h), or after a preliminary application of the field extrapolation, see [22].

We stress that our analytical expressions for the asymptotic estimates are original, with only partial analogs in
other works when translated into the current context. According to [20], for extended finite magnetic sources, net
moment estimates in terms of the measured field have first appeared in Helbig’s work [12] and later rediscovered by
Clark and Schmidt, see, e.g., [23]. When truncated to a finite measurement area, these estimates correspond to our
first-order asymptotic formulas for tangential components of net moment, but without a mention of the order of the
asymptotic convergence, let alone a possibility of obtaining their more precise higher-order counterparts. Note that,
in our context, since only B3 component of the field is measured, those previous estimates do not provide means to
estimate the normal net moment component m3. Indeed, an estimate of m3 was provided only in terms of either B1

or B2 components. When measurements of these two field components are not available, one can potentially argue
that it is still possible to use the Helbig’s formulas after reconstructing the missing components of the field from the
knowledge of B3 alone using, for example, [11] and [8, Ch. 12]. However, this is possible only to accomplish in a
stable way only if B3 is known on the entire plane. In view of this, we believe that an explicit estimate of m3 from
knowledge of B3 alone on a finite region for the first time was proposed only in [21, 5, 3]. It should be noted that
results in [3] are also applicable for measurement regions different from disk, namely, for those of rectangular and
diamond shapes. We take advantage of this comparison of results to mention and to correct a couple of issues in
[5]. First of all, there is a typo in the m3 formula obvious when compared to (2.4) or [21, Thm 3.1.1]: in eq. [5, Eq.
(5)], the factor A should be in the numerator rather than the denominator. Moreover, the numerical illustration
of the m3 estimate, in case of noisy data, showed a divergent behavior with the growth of the measurement disk,
and this linearly growing trend was proposed to be removed by an appropriate postprocessing. It turns out that
this undesirable behavior was merely a consequence of the numerical implementation (Simpson’s quadrature rule
should have been avoided due to the low regularity of the noisy field) and not the asymptotic formula itself, as
demonstrated in the present work; the same is also true for higher-order estimates of m3. The drawback of finiteness
of the measurement region for the application of Helbig’s integral formulas has been recognised a while ago and its
influence has been analysed, see, e.g., [17]. One possibility to deal with this was to choose and correct a suitable
integration window so that the consistency of Helbig’s integrals is respected (since some integrals of the field data
must be identically zero), see [20]. Another approach consists in replacing the missing field data by the field of a
fictious dipole whose location and moment are estimated iteratively from appropriate integrals of the available data
[1, 9]. A similar iterative strategy [18] is based on the multipolar expansion of order 2 (involving quadrupole moment
tensor). In a recent work [16], a multipolar approach of arbitrary order has been used to fit the measured data
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furnishing the net moment as first coefficients of the multipolar expansion. This shows good results but requires
a potentially delicate parameter tunning (such as choice of the origin and the order of the expansion) as a part
of the regularisation process. A totally different method which does not theoretically require a large measurement
region is that based on a bounded extremal problem for finding best-possible linear estimators [2]. These estimators
are auxiliary functions whose integrals against the measured data furnish the components of the net moment.
Finding such estimators in a particular functional class requires solving an integro-differential equation which is
a numerically laborous task. While formally applicable for any size and position of the measurement region with
respect to the magnetic source, a practical sensitivity of that approach to perturbations of the measured data must
increase enormously when the measurement area is not sufficiently large or well-located with respect to the source.
Moreover, this approach is restricted to planar and regular (square-integrable) sources at a known height (depth).

The present approach is applicable for one-component field measurements. It has high accuracy already for
relatively small measurement area due to the higher-order asymptotic estimates (which, unlike Helbig’s integrals,
include also estimates for m3 from B3). The approach is easy to implement numerically due to the explicit nature
of the estimates. It is applicable for bounded volumetric magnetic sources which are not necessarily regular (they
may be even compactly supported distributions, not just square-integrable functions). Moreover, the approach does
not require the knowledge of the depth of the source (as all the estimates are seen to be independent of the height
parameter h which must only satisfy a certain a priori assumption).

The structure of the paper is as follows. Section 2 presents the main results of the paper formulated as Theorem
2.1 and discusses the limitations of their applicability. Section 3 has a twofold goal. First, it is meant to show
how one idea based on straightforward Fourier analysis can yield the simplest version of asymptotic net moment
estimates for both tangential and normal components. Second, that section illustrates that, by means of a careful
asymptotic analysis, the explicit estimates can be not only proved rigorously but also extended to higher orders.
Hence, this material exactly constitutes the proof of Theorem 2.1. Then, in Section 4, we illustrate the results
numerically on the case where the magnetisation has a singular support (a collection of dipoles is modelled by
magnetisation distribution that is a sum of Dirac delta functions) and deal with some practical aspects of the
obtained estimates. Finally, we conclude with Section 5 summarising the work, discussing the obtained results and
outlining potential further research directions.

2. Main results

Let E ′
(
R3
)
be the space of compactly supported distributions on R3, i.e., the linear functionals on smooth

functions C∞
(
R3
)
, see [25, Sect. 6.1].

Denote DA :=
{
x ∈ R2 : |x| < A

}
, the disk of radius A centered at the origin x = 0.

The main result of this work is summarised in the following theorem.

Theorem 2.1. Assume that ~M∈
[
E ′
(
R3
)]3 with supp ~M⊂ Q for a bounded set Q ⊂ R3. Suppose that the values

of the vertical component of the magnetic field B3 (related to ~M by means of (1.2)) are known on the horizontal
disk DA×{x3 = h} that does not intersect Q and whose radius A is sufficiently large so that the following inequality
holds:

(2.1) sup
~t∈Q, x∈R2\DA

∣∣∣∣∣ t21 + t22 + (h− t3)
2

x21 + x22
− 2

x1t1 + x2t2
x21 + x22

∣∣∣∣∣ < 1.

Then, the components of the net moment vector (1.3) can be asymptotically estimated with different orders of
accuracy as follows.
First-order estimates:

mj = 2

∫∫
DA

xjB3 (x, h) d2x+O
(

1

A

)
, j ∈ {1, 2} .(2.2)

Second-order estimates:

mj = 2

∫∫
DA

(
1 +

4x2j
3A2

)
xjB3 (x, h) d2x+O

(
1

A2

)
, j ∈ {1, 2} ,(2.3)

(2.4) m3 = 2A

∫∫
DA

B3 (x, h) d2x+O
(

1

A2

)
.

Third-order estimates:

(2.5) mj =
2

5

∫∫
DA

[
5 + 24

(xj
A

)4]
xjB3 (x, h) d2x+O

(
1

A3

)
, j ∈ {1, 2} ,
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(2.6) m3 =
A

4

∫∫
DA

[
5 + 40

(xj
A

)4
− 128

(xj
A

)6]
B3 (x, h) d2x+O

(
1

A3

)
, j ∈ {1, 2} .

Fourth-order estimates:
(2.7)

mj =
2

105

∫∫
DA

[
105− 2016

(xj
A

)4
+ 19200

(xj
A

)6
− 22400

(xj
A

)8]
xjB3 (x, h) d2x+O

(
1

A4

)
, j ∈ {1, 2} ,

(2.8) m3 =
A

24

∫∫
DA

[
35 + 1792

(xj
A

)6
− 3200

(xj
A

)8]
B3 (x, h) d2x+O

(
1

A4

)
, j ∈ {1, 2} .

Fifth-order estimates:
(2.9)

mj =
2

231

∫∫
DA

[
231− 52800

(xj
A

)6
+ 246400

(xj
A

)8
− 225792

(xj
A

)10]
xjB3 (x, h) d2x+O

(
1

A5

)
, j ∈ {1, 2} .

Remark 2.2. Here and onwards (except numerics in Section 4), for the sake of simplicity, we have assumed the
system of physical units such that the constant of magnetic permeability of vacuum µ0 is 1. In general, the right-
hand sides of expression (1.2) should have the factor µ0, and, in Si units, µ0 = 4π · 10−7 N / A2. Consequently, the
right-hand sides of all the formulas (2.2)–(2.9) should, in principle, have the factor 1/µ0.

Remark 2.3. It is not difficult to see that condition (2.1) can be replaced with

(2.10) inf
~t∈Q, x∈R2\DA

(x1 − t1)
2

+ (x2 − t2)
2

2 (t21 + t22) + (h− t3)
2 > 1.

Indeed, (2.1) is obtained from (see (3.23))

−1 <
t21 + t22 + (h− t3)

2

x21 + x22
− 2

x1t1 + x2t2
x21 + x22

< 1, ~t ∈ Q, x ∈ R2\DA.

Here, the validity of the left inequality is trivial since

(x1 − t1)
2

+ (x2 − t2)
2

+ (h− t3)
2
> 0, ~t ∈ Q, x ∈ R2\DA,

whereas the right inequality can be rewritten as

x21 + x22 + 2 (x1t1 + x2t2) + t21 + t22 > 2
(
t21 + t22

)
+ (h− t3)

2
, ~t ∈ Q, x ∈ R2\DA.

By the symmetry of the area R2\DA, we can change the signs in front of x1 and x2. Recognising the complete
square on the left-hand side and dividing over the positive expression from the right-hand side, we arrive exactly
at the fraction appearing in (2.10) and it only rests to take the infimum.

Finally, let us point out a simplification occuring in the common setting (e.g., when Q is a minimal rectangular
parallelipiped or a ball containing the magnetisation support located under the measurement device). Namely, if Q
is a bounded connected set whose lowest points lie at x3 = 0 plane and whose horizontal projection Q12 contains
the center x = 0 of the measurement disk DA, then inequality (2.10) can be ensured by imposing a stricter but
geometrically simpler condition

(2.11)
2 [dist (∂DA, Q12)]

2

(diam Q12)
2

+ 2h2
> 1,

where diam Q12 denotes the diameter of Q12 and dist (∂DA, Q12) is the distance between the boundary of the
measurement disk and Q12. Indeed, by the above assumption on the location of Q and choice of the origin, we have
t21 + t22 ≤ (diam Q12)

2
/4, (h− t3)

2 ≤ h2 for ~t ∈ Q, and hence the inequality

inf
~t∈Q, x∈R2\DA

(x1 − t1)
2

+ (x2 − t2)
2

2 (t21 + t22) + (h− t3)
2 ≥

1

(diam Q12)
2
/2 + h2

inf
~t∈Q, x∈R2\DA

[
(x1 − t1)

2
+ (x2 − t2)

2
]

=
2 [dist (∂DA, Q12)]

2

(diam Q12)
2

+ 2h2

means that (2.11) would imply (2.10).

Note that condition (2.11) specific to our asymptotic approach is actually quite natural and generally consistent
with the geometric setting in which a good (reasonably stable) inversion can be expected since the Poisson transfor-
mation lying at the heart of the integral operator in (1.2) is known to rapidly spread away the source information,
see also [17].
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3. Proof of Theorem 2.1

3.1. Some notation and preparatory transformations. Before we proceed with deriving rigorously formulas
(2.2)–(2.9) and thus proving Theorem 2.1, let us introduce some useful notations. We shall use the following
notational shortcut for the integral of the magnetisation distribution against monomials

(3.1)
〈
xj11 x

j2
2 x

j3
3 Mn

〉
:=

∫∫∫
Q

xj11 x
j2
2 x

j3
3 Mn (~x) d3x, n ∈ {1, 2, 3} , j1, j2, j3 ∈ N0,

where we denoted N0 := {0, 1, 2, . . .}, the set of natural numbers with zero. Following this convention, for the sake
of brevity, we may also write, for example,

〈(h− x3)Mn〉 := hmn − 〈x3Mn〉 =

∫∫∫
Q

(h− x3)Mn (~x) d3x, n ∈ {1, 2, 3} .

As before, we note that, when magnetisation ~M is not a function but a compactly supported distribution, the
integrals above should be understood as the duality pairings between Mn ∈ E ′

(
R3
)
and xj11 x

j2
2 x

j3
3 ∈ C∞

(
R3
)
:∫∫∫

Q
xj11 x

j2
2 x

j3
3 Mn (~x) d3x ≡

〈
Mn, x

j1
1 x

j2
2 x

j3
3

〉
with j1, j2, j3 ∈ N0, n ∈ {1, 2, 3}.

Let us ·̂ denote the two-dimensional Fourier transform which, by our convention, is defined as

f̂ (k) ≡ F [f ] (k) :=

∫∫
R2

e2πik·xf (x) d2x,

where i =
√
−1 stands for the imaginary unit, and k · x = k1x1 + k2x2 is the Euclidean inner product. With this

definition, the differentiation and convolution properties of Fourier transform have the form

(3.2) F
[
∂xj

f
]

(k) = −2πikj f̂ (k) , F [xjf ] (k) =
1

2πi
∂kj f̂ (k) , j ∈ {1, 2} ,

(3.3) F [f ? g] (k) :=

∫∫
R2

e2πik·x
∫∫

R2

f (x− t) g (t) d2td2x = f̂ (k) ĝ (k) .

We also note that the Fourier transform of the two-dimensional Poisson kernel is well-known (see, e.g., [25, Sect.
4.2]), that is, for any H > 0, we have

(3.4) F

 H

2π
(
|x|2 +H2

)3/2
 (k) = e−2πH|k|, k ∈ R2.

Let us now rewrite (1.2) as

B3 (x, h) =− 1

4π

∫∫∫
Q

(M1 (t, t3)
∂

∂x1
+M2 (t, t3)

∂

∂x2

)
h− t3(

|x− t|2 + (h− t3)
2
)3/2(3.5)

+M3 (t, t3)

 ∂

∂x3

x3 − t3(
|x− t|2 + (x3 − t3)

2
)3/2

∣∣∣∣∣
x3=h

d3t.

Taking Fourier transform of (3.5) in both x1 and x2 variables, we use (3.2), (3.3) and employ (3.4) twice: with
H := h− t3 in the first line of (3.5), and with H := x3 − t3 in the second one. We thus arrive at

(3.6) B̂3 (k, h) = π

∫
Q3

e−2π(h−t3)|k|
(
ik1M̂1 (k, t3) + ik2M̂2 (k, t3) + |k| M̂3 (k, t3)

)
dt3,

where Q3 denotes the vertical projection of the set Q.
We note that even though (2.2)–(2.3), (2.5), (2.7), (2.9) give estimates for tangential net moment components

m1, m2, we shall restrict ourselves to dealing only with m1. The situation with m2 is completely analogous.
First, we are going to illustrate our strategy of the derivation of asymptotic estimates of the net magnetisation

moment. Here, we shall be only concerned with the low-order formulas of Theorem 2.1 and we shall omit a rigorous
justification step. Then, we shall proceed with formal justification and extension of the result to higher orders.
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3.2. Illustration of the basic idea of the derivation of the net moment estimates. We are going to focus
on deriving (2.2).

We take k2 = 0 in expression (3.6) to obtain

(3.7) B̂3 (k1, 0, h) = π

∫
Q3

e−2π(h−t3)|k1|
(
ik1M̂1 (k1, 0, t3) + |k1| M̂3 (k1, 0, t3)

)
dt3.

Since the magnetisation distribution ~M is compactly supported, the Fourier transforms M̂j (k, t3), j ∈ {1, 2, 3},
are entire functions in k1, k2 ∈ C for each t3 ∈ Q3, according to the Paley-Wiener theory (see, e.g., [24, Thm 4.1]).
In particular, power-series expansion of M̂j (k1, 0, t3), j ∈ {1, 2, 3}, about the origin k1 = 0 of the complex plane
(Re k1, Im k1) gives

M̂j (k1, 0, t3) =M̂j (0, t3) + ∂k1M̂j (0, t3) k1 +
1

2
∂2k1M̂j (0, t3) k21 +O

(
|k1|3

)
, j ∈ {1, 2, 3} .

Combining this expansion with the straightforward identities

mj =

∫
Q3

M̂j (0, t3) dt3, j ∈ {1, 2, 3} ,

2πi 〈Mjx1〉 =

∫
Q3

∂k1M̂j (0, t3) dt3, j ∈ {1, 2, 3} ,

and the Taylor expansion in |k1| of the exponential factor in (3.7)

e−2π(h−t3)|k1| = 1− 2π (h− t3) |k1|+ 2π2 (h− t3)
2 |k1|2 +O

(
|k1|3

)
,

we obtain
B̂3 (k1, 0, h) = Re B̂3 (k1, 0, h) + i Im B̂3 (k1, 0, h) , k1 ∈ R,

Re B̂3 (k1, 0, h) =πm3 |k1| − 2π2 (〈x1M1〉+ 〈(h− x3)M3〉) |k1|2

+ 2π3
(

2 〈(h− x3)x1M1〉+
〈

(h− x3)
2
M3

〉
−
〈
x21M3

〉)
|k1|3 +O

(
|k1|4

)
,(3.8)

Im B̂3 (k1, 0, h) =πm1k1 − 2π2 (〈(h− x3)M1〉 − 〈x1M3〉) k1 |k1|

− 2π3
(〈
x21M1

〉
−
〈

(h− x3)
2
M1

〉
+ 2 〈(h− x3)x1M3〉

)
k31 +O

(
|k1|4

)
.(3.9)

Here, the remainder terms are uniformly small for all t3 ∈ Q3 due to the boundedness of the set Q3.
On the other hand, we can write

B̂3 (k1, 0, h) =

∫∫
DA

e2πik1x1B3 (x, h) d2x+

∫∫
R2\DA

e2πik1x1B3 (x, h) d2x.(3.10)

We note that in the first term on the right-hand side of (3.10), the integration range is finite and hence an
expansion in powers of k1 simply follows from that of the exponential factor:

∫∫
DA

e2πik1x1B3 (x, h) d2x =

∫∫
DA

B3 (x, h) d2x+ 2πik1

∫∫
DA

x1B3 (x, h) d2x− 2π2k21

∫∫
DA

x21B3 (x, h) d2x

(3.11)

− 4π3

3
ik31

∫∫
DA

x31B3 (x, h) d2x+O
(
|k1|4

)
,

and hence

(3.12)
∫∫

DA

cos (2πk1x1)B3 (x, h) d2x =

∫∫
DA

B3 (x, h) d2x− 2π2k21

∫∫
DA

x21B3 (x, h) d2x+O
(
|k1|4

)
,

(3.13)
∫∫

DA

sin (2πk1x1)B3 (x, h) d2x = 2πk1

∫∫
DA

x1B3 (x, h) d2x− 4π3

3
k31

∫∫
DA

x31B3 (x, h) d2x+O
(
|k1|5

)
.

Producing an expansion in powers of k1 of the second term in (3.10) is much less straightforward and requires
a preliminary simplification. More precisely, we expand the field B3 (x, h) for large |x| and, assuming largeness of
the region DA, retain only first few terms of this expansion. Namely, from (1.2), we have

(3.14) B3 (x, h) = − m3

4π |x|3
+

3

4π

(〈(h− x3)M1〉 − 〈x1M3〉)x1 + (〈(h− x3)M2〉 − 〈x2M3〉)x2
|x|5

+O

(
1

|x|5

)
.
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Consequently, passing to the polar coordinates using x1 = r cos θ, x2 = r sin θ, d2x = rdrdθ, we can write∫∫
R2\DA

e2πik1x1B3 (x, h) d2x =− m3

4π

∫ ∞
A

∫ 2π

0

e2πik1r cos θdθ
dr

r2

+
3

4π
(〈(h− x3)M1〉 − 〈x1M3〉)

∫ ∞
A

∫ 2π

0

e2πik1r cos θ cos θdθ
dr

r3

+
3

4π
(〈(h− x3)M2〉 − 〈x2M3〉)

∫ ∞
A

∫ 2π

0

e2πik1r cos θ sin θdθ
dr

r3

+RA,k1 ,

where the residue term RA,k1 is expected to be O
(
1/A3

)
for sufficiently small values of |k1|.

Furthermore, taking real and imaginary parts of both sides, we obtain, respectively,

(3.15)
∫∫

R2\DA

cos (2πk1x1)B3 (x, h) d2x = −m3

4π

∫ ∞
A

∫ 2π

0

cos (2πk1r cos θ) dθ
dr

r2
+ Re RA,k1 ,

(3.16)∫∫
R2\DA

sin (2πk1x1)B3 (x, h) d2x =
3

4π
(〈(h− x3)M1〉 − 〈x1M3〉)

∫ ∞
A

∫ 2π

0

sin (2πk1r cos θ) cos θdθ
dr

r3
+ Im RA,k1 ,

where we took into account that∫ 2π

0

cos (2πk1r cos θ) sin θdθ =

∫ 2π

0

cos (2πk1r cos θ) cos θdθ = 0,

∫ 2π

0

sin (2πk1r cos θ) dθ =

∫ 2π

0

sin (2πk1r cos θ) sin θdθ = 0,

according to the results of Lemma A.4.
Next, as it turns out (see Subsection 3.3 for more details), the integrals on the right-hand sides of (3.15)–(3.16)

can be evaluated explicitly in terms of some cylindrical functions. Known representations of these special functions
lead to the desired asymptotic expansions in powers of k1. In particular, for small |k1|, we can deduce that∫ ∞

A

∫ 2π

0

cos (2πk1r cos θ) dθ
dr

r2
= 2π |k1|

∫ ∞
2π|k1|A

∫ 2π

0

cos (r cos θ) dθ
dr

r2
(3.17)

=
2π

A
− 4π2 |k1|+ 2π3A |k1|2 +O

(
A2 |k1|3

)
,

∫ ∞
A

∫ 2π

0

sin (2πk1r cos θ) cos θdθ
dr

r3
= 4π2k1 |k1|

∫ ∞
2π|k1|A

∫ 2π

0

sin (r cos θ) cos θdθ
dr

r3
(3.18)

=
2π2

A
k1 −

8π3

3
k1 |k1|+ π4Ak31 +O

(
A3 |k1|5

)
,

where the notation O
(
A2 |k1|3

)
also hides the terms of powers of |k1| higher than 3 regardless of the presence of

the A factors such as O
(
A3 |k1|4

)
.

Therefore, by taking the real part of (3.10) and using (3.12), (3.15) and (3.17), we obtain

Re B̂3 (k1, 0, h) =

∫∫
DA

B3 (x, h) d2x− 2π2k21

∫∫
DA

x21B3 (x, h) d2x

− m3

4π

(
2π

A
− 4π2 |k1|+ 2π3A |k1|2

)
+ Re RA,k1 +O

(
A2 |k1|3

)
.

Comparing this with (3.8) and, in particular, evaluating both expressions at k1 = 0, we arrive at the following
identity:

(3.19)
∫∫

DA

B3 (x, h) d2x− m3

2A
+O

(
1

A3

)
= 0,

where we took into account that Re RA,k1 |k1=0 = O
(
1/A3

)
.
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Similarly, taking the imaginary part of (3.10), we combine (3.13), (3.16) and (3.18) to deduce that

Im B̂3 (k1, 0, h) =2πk1

∫∫
DA

x1B3 (x, h) d2x− 4π3

3
k31

∫∫
DA

x31B3 (x, h) d2x

+
3

4π
(〈(h− x3)M1〉 − 〈x1M3〉)

(
2π2

A
k1 −

8π3

3
k1 |k1|+ π4Ak31

)
+ Im RA,k1 +O

(
A3 |k1|5

)
.

Comparison of this expression with (3.9) and matching the coefficients of the k1 terms yields

(3.20) 2π

∫∫
DA

x1B3 (x, h) d2x+
3π

2A
(〈(h− x3)M1〉 − 〈x1M3〉) +O

(
1

A3

)
= πm1,

where we assumed that, for sufficiently small |k1|, we have Im RA,k1 = O
(
1/A3

)
.

While (3.19), (3.20) imply estimates (2.4), (2.2), respectively, the derivation given above was not rigorous and
required additional assumptions on the residue term RA,k1 which was reasonably deemed to be sufficiently small
for large A but was not estimated uniformly in k1. We shall now proceed with rigorous analysis which will also
make it possible to derive higher-order analogs of estimates (2.2), (2.4).

3.3. Rigorous analysis and higher-order asymptotic estimates. Let us start by improving estimate (3.14).
To this effect, we use the following elementary Taylor expansions, convergent for |z| < 1,

1

(1 + z)
3/2

= 1− 3

2
z +

15

8
z2 − 35

16
z3 +O

(
z4
)
,

1

(1 + z)
5/2

= 1− 5

2
z +

35

8
z2 +O

(
z3
)
,

to obtain, for t1, t2, t3, h ∈ R, t3 6= h,

1[
(x1 − t1)

2
+ (x2 − t2)

2
+ (h− t3)

2
]3/2 =

1

(x21 + x22)
3/2

[
1− 2

x1t1 + x2t2
x21 + x22

+
t21 + t22 + (h− t3)

2

x21 + x22

]−3/2(3.21)

=
1

(x21 + x22)
3/2

[
1 + 3

x1t1 + x2t2
x21 + x22

− 3

2

t21 + t22 + (h− t3)
2

x21 + x22
+

15

2

(x1t1 + x2t2)
2

(x21 + x22)
2

−15

2

(x1t1 + x2t2)
(
t21 + t22 + (h− t3)

2
)

(x21 + x22)
2 +

35

2

(x1t1 + x2t2)
3

(x21 + x22)
3

+O

(
1

|x|7

)
,

1[
(x1 − t1)

2
+ (x2 − t2)

2
+ (h− t3)

2
]5/2 =

1

(x21 + x22)
5/2

[
1 + 5

x1t1 + x2t2
x21 + x22

− 5

2

t21 + t22 + (h− t3)
2

x21 + x22
(3.22)

+
35

2

(x1t1 + x2t2)
2

(x21 + x22)
2

]
+O

(
1

|x|8

)
,

where x1, x2 ∈ R, |x1|+ |x2| > 0, are of a sufficiently large magnitude so that

(3.23)

∣∣∣∣∣ t21 + t22 + (h− t3)
2

x21 + x22
− 2

x1t1 + x2t2
x21 + x22

∣∣∣∣∣ < 1.

Expansions (3.21)–(3.22) imply that, for |x| � 1, (1.2) can be written as

(3.24) B3 (x, h) = Basympt
3 (x, h) +O

(
1

|x|7

)
,

with

Basympt
3 (x, h) :=

c0,0

|x|3
+
c1,0x1 + c0,1x2

|x|5
+
c2,0x

2
1 + c0,2x

2
2 + c1,1x1x2

|x|7
(3.25)

+
c3,0x

3
1 + c0,3x

3
2 + c2,1x

2
1x2 + c1,2x1x

2
2

|x|9
,
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(3.26) c0,0 := −m3

4π
,

(3.27) c1,0 :=
3

4π
[〈(h− x3)M1〉 − 〈x1M3〉] , c0,1 :=

3

4π
[〈(h− x3)M2〉 − 〈x2M3〉] ,

c2,0 :=
3

8π

[
8 〈(h− x3)x1M1〉 − 4

〈
x21M3

〉
+
〈
x22M3

〉
(3.28)

−2 〈(h− x3)x2M2〉+ 3
〈

(h− x3)
2
M3

〉]
,

c0,2 :=
3

8π

[
8 〈(h− x3)x2M2〉 − 4

〈
x22M3

〉
+
〈
x21M3

〉
(3.29)

−2 〈(h− x3)x1M1〉+ 3
〈

(h− x3)
2
M3

〉]
,

(3.30) c1,1 :=
15

4π
[〈(h− x3)x2M1〉+ 〈(h− x3)x1M2〉 − 〈x1x2M3〉] ,

c3,0 :=
5

8π

[
12
〈
(h− x3)x21M1

〉
− 4

〈
x31M3

〉
− 3

〈
(h− x3)x22M1

〉
− 3

〈
(h− x3)

3
M1

〉
(3.31)

−6 〈(h− x3)x1x2M2〉+ 3
〈
x1x

2
2M3

〉
+ 9

〈
(h− x3)

2
x1M3

〉]
,

c0,3 :=
5

8π

[
12
〈
(h− x3)x22M2

〉
− 4

〈
x32M3

〉
− 3

〈
(h− x3)x21M2

〉
− 3

〈
(h− x3)

3
M2

〉
(3.32)

−6 〈(h− x3)x1x2M1〉+ 3
〈
x21x2M3

〉
+ 9

〈
(h− x3)

2
x2M3

〉]
,

c2,1 :=
15

8π

[
6
〈
(h− x3)x21M2

〉
+ 12 〈(h− x3)x1x2M1〉 − 6

〈
x21x2M3

〉
(3.33)

−3
〈
(h− x3)x22M2

〉
−
〈

(h− x3)
3
M2

〉
+
〈
x32M3

〉
+ 3

〈
(h− x3)

2
x2M3

〉]
,

c1,2 :=
15

8π

[
6
〈
(h− x3)x22M1

〉
+ 12 〈(h− x3)x1x2M2〉 − 6

〈
x1x

2
2M3

〉
(3.34)

−3
〈
(h− x3)x21M1

〉
−
〈

(h− x3)
3
M1

〉
+
〈
x31M3

〉
+ 3

〈
(h− x3)

2
x1M3

〉]
,

and condition (3.23), for our particular context, rewrites as (2.1).
We are going to pursue the idea outlined in the previous subsection. Namely, comparing a series expansion of

(3.7) about k1 = 0 with that of (3.10), we shall deduce a set of identities which relate magnetisation moments
to the integrals of the measured data B3 (x, h) on DA. More precisely, using compactness of the support of
the magnetisation ~M, it follows from (3.7) that Re B̂3 (k1, 0, h) is a convergent series in powers of |k1| whereas
Im B̂3 (k1, 0, h) is a power series in |k1| multiplied by k1. To facilitate the situation of matching the coefficients of
different representations, we shall focus on the region k1 > 0. Consequently, in what follows, evaluation at k1 = 0+

will mean the limiting value at k1 = 0 taken from the positive semiaxis (k1 > 0).

3.3.1. Tangential components of the net moment. Expanding the integrand in (3.7) in power series in a positive
neighborhood of k1 = 0 and taking the imaginary part, we deduce:

∂k1

[
Im B̂3 (k1, 0, h)

]∣∣∣
k1=0+

= πm1 =: d1,(3.35)

1

6
∂3k1

[
Im B̂3 (k1, 0, h)

]∣∣∣
k1=0+

= 2π3
[〈

(h− x3)
2
M1

〉
−
〈
x21M1

〉
− 2 〈(h− x3)x1M3〉

]
(3.36)

=: d3,
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1

5!
∂5k1

[
Im B̂3 (k1, 0, h)

]∣∣∣
k1=0+

=
2π5

3

[〈
(h− x3)

4
M1

〉
− 6

〈
(h− x3)

2
x21M1

〉
+
〈
x41M1

〉
(3.37)

−4
〈

(h− x3)
3
x1M3

〉
+ 4

〈
(h− x3)x31M3

〉]
=: d5,

1

7!
∂7k1

[
Im B̂3 (k1, 0, h)

]∣∣∣
k1=0+

=
4π7

45

[〈
(h− x3)

6
M1

〉
− 15

〈
(h− x3)

4
x21M1

〉
+ 15

〈
(h− x3)

2
x41M1

〉
−
〈
x61M1

〉(3.38)

−6
〈

(h− x3)
5
x1M3

〉
+ 20

〈
(h− x3)

3
x31M3

〉
− 6

〈
(h− x3)x51M3

〉]
=: d7,

1

9!
∂9k1

[
Im B̂3 (k1, 0, h)

]∣∣∣
k1=0+

=
2π9

315

[〈
(h− x3)

8
M1

〉
− 28

〈
(h− x3)

6
x21M1

〉
+ 70

〈
(h− x3)

4
x41M1

〉
(3.39)

− 28
〈

(h− x3)
2
x61M1

〉
+
〈
x81M1

〉
− 8

〈
(h− x3)

7
x1M3

〉
+56

〈
(h− x3)

5
x31M3

〉
− 56

〈
(h− x3)

3
x51M3

〉
+ 8

〈
(h− x3)x71M3

〉]
=: d9,

1

11!
∂11k1

[
Im B̂3 (k1, 0, h)

]∣∣∣
k1=0+

=
4π11

14175

[〈
(h− x3)

10
M1

〉
− 45

〈
(h− x3)

8
x21M1

〉
+ 210

〈
(h− x3)

6
x41M1

〉(3.40)

− 210
〈

(h− x3)
4
x61M1

〉
+ 45

〈
(h− x3)

2
x81M1

〉
−
〈
x101 M1

〉
− 10

〈
(h− x3)

9
x1M3

〉
+ 120

〈
(h− x3)

7
x31M3

〉
− 252

〈
(h− x3)

5
x51M3

〉
+ 120

〈
(h− x3)

3
x71M3

〉
−10

〈
(h− x3)x91M3

〉]
=: d11.

On the other hand, from (3.10), we have, for n ∈ N0,

∂2n+1
k1

[
Im B̂3 (k1, 0, h)

]∣∣∣
k1=0+

= (−1)
n

(2π)
2n+1

∫∫
DA

x2n+1
1 B3 (x, h) d2x(3.41)

+ ∂2n+1
k1

(∫∫
R2\DA

sin (2πk1x1)Basympt
3 (x, h) d2x

)∣∣∣∣∣
k1=0+

+ ∂2n+1
k1

(∫∫
R2\DA

sin (2πk1x1)
[
B3 (x, h)−Basympt

3 (x, h)
]

d2x

)∣∣∣∣∣
k1=0+

.

We shall proceed in 3 steps. First, we evaluate the integral

(3.42) Isin ≡ Isin (k1, A) :=

∫∫
R2\DA

sin (2πk1x1)Basympt
3 (x, h) d2x,

and compute its derivatives appearing on the second line of (3.41), hence obtaining a set of valuable identities.
Second, we estimate the derivatives of the remainder

(3.43) Rsin
2n+1 ≡ Rsin

2n+1 (A) := ∂2n+1
k1

(∫∫
R2\DA

sin (2πk1x1)
[
B3 (x, h)−Basympt

3 (x, h)
]

d2x

)∣∣∣∣∣
k1=0+

, n ∈ N0,

in order to show that the contribution of the term in the third line of (3.41) is not significant for large A (for the
chosen order of the asymptotic expansion). Finally, at the last step, we combine the obtained identities and derive
asymptotic formulas (2.2)–(2.3), (2.5), (2.7), (2.9) in a rigorously justified fashion.
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Step 1: Derivation of the set of identities. Using (3.25) and passing to the polar coordinates using x = r cos θ,
y = r sin θ, d2x = rdrdθ, we obtain from (3.42)

(3.44) Isin = c1,0Isin1 + +c3,0Isin2 + c1,2Isin3 ,

where

(3.45) Isin1 :=

∫ ∞
A

∫ 2π

0

sin (2πk1r cos θ) cos θdθ
dr

r3
,

(3.46) Isin2 :=

∫ ∞
A

∫ 2π

0

sin (2πk1r cos θ) cos3 θdθ
dr

r5
,

(3.47) Isin3 :=

∫ ∞
A

∫ 2π

0

sin (2πk1r cos θ) cos θ sin2 θdθ
dr

r5
.

Here, we used results (A.42)–(A.43) of Lemma A.4 multiple times to deduce vanishing of the integrals associated
with the terms which involve c0,0, c0,1, c2,0, c0,2, c1,1, c0,3, c2,1.

We now employ the integral representation of Bessel functions, given in (A.5), to rewrite, for k1 > 0,

(3.48) Isin1 = 2π

∫ ∞
A

J1 (2πk1r)
dr

r3
= (2π)

3
k21

∫ ∞
2πk1A

J1 (x)

x3
dx,

Isin2 = −2π

∫ ∞
A

J ′′1 (2πk1r)
dr

r5
= − (2π)

5
k41

∫ ∞
2πk1A

J ′′1 (x)

x5
dx(3.49)

= (2π)
5
k41

(
5J1 (ρ)

ρ6
+
J ′1 (ρ)

ρ5
− 30

∫ ∞
ρ

J1 (x)

x7
dx

)∣∣∣∣
ρ=2πk1A

,

Isin3 = 2π

∫ ∞
A

[J1 (2πk1r) + J ′′1 (2πk1r)]
dr

r5
= (2π)

5
k41

∫ ∞
2πk1A

J1 (x) + J ′′1 (x)

x5
dx,(3.50)

= − (2π)
5
k41

(
5J1 (ρ)

ρ6
+
J ′1 (ρ)

ρ5
−
∫ ∞
ρ

J1 (x)

x5
dx− 30

∫ ∞
ρ

J1 (x)

x7
dx

)∣∣∣∣
ρ=2πk1A

.

Note that, in (3.49)–(3.50), we employed integration by parts twice using the asymptotic behavior of J1 given in
(A.6).

Using the results of Lemmas A.2–A.3, we have

Isin1 =
(2π)

2
k1

A

(
ρ

∫ ∞
ρ

J1 (x)

x3
dx

)∣∣∣∣
ρ=2πk1A

(3.51)

=
(2π)

2
k1

3A

[
J0 (ρ) +

J1 (ρ)

ρ
− ρ− ρJ1 (ρ) + ρ2J0 (ρ)− π

2
ρ2J0 (ρ)H1 (ρ) +

π

2
ρ2J1 (ρ)H0 (ρ)

]∣∣∣∣
ρ=2πk1A

,

Isin2 =
(2π)

2
k1

A3

(
5J1 (ρ)

ρ3
+
J ′1 (ρ)

ρ2
− 30ρ3

∫ ∞
ρ

J1 (x)

x7
dx

)∣∣∣∣
ρ=2πk1A

(3.52)

=
(2π)

2
k1

105A3

[
−15J1 (ρ)

ρ3
+

15J ′1 (ρ)

ρ2
+

24J1 (ρ)

ρ
+ 6J ′1 (ρ)− 2ρ2J0 (ρ)− 2ρJ1 (ρ)

+2ρ3 + 2ρ3J1 (ρ)− 2ρ4J0 (ρ) + πρ4J0 (ρ)H1 (ρ)− πρ4J1 (ρ)H0 (ρ)

]∣∣∣∣
ρ=2πk1A

,

Isin3 = − (2π)
2
k1

A3

(
5J1 (ρ)

ρ3
+
J ′1 (ρ)

ρ2
− ρ3

∫ ∞
ρ

J1 (x)

x5
dx− 30ρ3

∫ ∞
ρ

J1 (x)

x7
dx

)∣∣∣∣
ρ=2πk1A

(3.53)

=
(2π)

2
k1

105A3

[
15J1 (ρ)

ρ3
− 15J ′1 (ρ)

ρ2
+

4J1 (ρ)

ρ
+ J ′1 (ρ)− ρ2J0 (ρ)

3
− ρJ1 (ρ)

3

+
ρ3

3
+
ρ3J1 (ρ)

3
− ρ4J0 (ρ)

3
+
πρ4

6
J0 (ρ)H1 (ρ)− πρ4

6
J1 (ρ)H0 (ρ)

]∣∣∣∣
ρ=2πk1A

.
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Therefore, (3.44) together with (3.51)–(3.53) furnishes an explicit form of (3.42). In particular, using (A.2), (A.11),
we can compute

(3.54) ∂k1Isin
∣∣
k1=0+

=
1

2
(2π)

2

(
c1,0
A

+
3c3,0 + c1,2

12A3

)
,

(3.55) ∂3k1I
sin
∣∣
k1=0+

=
3

8
(2π)

4
A2

(
c1,0
A
− 5c3,0 + c1,2

6A3

)
,

(3.56) ∂5k1I
sin
∣∣
k1=0+

= − 5

16
(2π)

6
A4

(
c1,0
3A

+
7c3,0 + c1,2

8A3

)
,

(3.57) ∂7k1I
sin
∣∣
k1=0+

=
7

128
(2π)

8
A6

(
c1,0
A

+
9c3,0 + c1,2

6A3

)
,

(3.58) ∂9k1I
sin
∣∣
k1=0+

= − 21

256
(2π)

10
A8

(
3c1,0
7A

+
11c3,0 + c1,2

20A3

)
,

(3.59) ∂11k1I
sin
∣∣
k1=0+

=
33

14336
(2π)

12
A10

(
98c1,0

9A
+

13c3,0 + c1,2
A3

)
.

Taking into account (3.42), (3.43), we use (3.35)–(3.40) and (3.54)–(3.59) in (3.41) with n = 0, . . . , 5, respectively,
and thus arrive at the following set of identities:

(3.60) 2π

∫∫
DA

x1B3 (x, h) d2x+ 2π2

(
c1,0
A

+
3c3,0 + c1,2

12A3

)
+Rsin

1 = d1,

(3.61) −4π3

3

∫∫
DA

x31B3 (x, h) d2x+ π4A2

(
c1,0
A
− 5c3,0 + c1,2

6A3

)
+

1

6
Rsin

3 = d3,

(3.62)
4π5

15

∫∫
DA

x51B3 (x, h) d2x− π6A4

6

(
c1,0
3A

+
7c3,0 + c1,2

8A3

)
+

1

5!
Rsin

5 = d5,

(3.63) − (2π)
7

5040

∫∫
DA

x71B3 (x, h) d2x+
(2π)

8
A6

92160

(
c1,0
A

+
9c3,0 + c1,2

6A3

)
+

1

7!
Rsin

7 = d7,

(3.64)
(2π)

9

362880

∫∫
DA

x91B3 (x, h) d2x− 7 (2π)
10
A8

10321920

(
c1,0
7A

+
11c3,0 + c1,2

60A3

)
+

1

9!
Rsin

9 = d9,

(3.65) − (2π)
11

39916800

∫∫
DA

x111 B3 (x, h) d2x+
(2π)

12
A10

17340825600

(
98c1,0

9A
+

13c3,0 + c1,2
A3

)
+

1

11!
Rsin

11 = d11.

Step 2: Analysis of the remainder terms Rsin
2n+1 for 0 ≤ n ≤ 5. We shall now show that the remainder terms Rsin

2n+1

with n = 0, . . . , 5 given by (3.43) (with k1 > 0, as assumed before), can be estimated, for A� 1, as follows

(3.66) Rsin
2n+1 = O

(
1

A5−2n

)
, 0 ≤ n ≤ 5.

Proceeding with higher-order terms in the expansions in (3.21)–(3.22), and hence also in (3.24), we notice that
we can write, for N ≥ 4,

(3.67) B3 (x, h)−Basympt
3 (x, h) =

N∑
q=4

∑∑
l1, l2≥0,
l1+l2=q

cl1,l2
xl11 x

l2
2

|x|2q+3 +O

(
1

|x|N+4

)
=: LN (x) +O

(
1

|x|N+4

)
,

with some constants cl1,l2 ∈ R for l1, l2 ∈ N0. Consequently, we consider, for n = 0, . . . , 5,

Rsin
2n+1 = ∂2n+1

k1

(∫∫
R2\DA

sin (2πk1x1)LN (x) d2x

)∣∣∣∣∣
k1=0+

(3.68)

+ ∂2n+1
k1

(∫∫
R2\DA

sin (2πk1x1)
[
B3 (x, h)−Basympt

3 (x, h)− LN (x)
]

d2x

)∣∣∣∣∣
k1=0+

.
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First of all, we deal with the term on the second line. The integrand is regular and, for N > 9, it decays at
infinity sufficiently fast so that the differential operator ∂2n+1

k1
with 0 ≤ n ≤ 5 can be passed under the integral sign.

We can thus estimate∣∣∣∣∣∂2n+1
k1

(∫∫
R2\DA

sin (2πk1x1)
[
B3 (x, h)−Basympt

3 (x, h)− LN (x)
]

d2x

)∣∣∣
k1=0+

∣∣∣∣∣
=

∣∣∣∣∣
(∫∫

R2\DA

(2πx1)
2n+1

|x|N+4
|x|N+4 [

B3 (x, h)−Basympt
3 (x, h)− LN (x)

]
d2x

)∣∣∣∣∣
≤ (2π)

2(n+1)
CN

∫ ∞
A

dr

rN−2n+1
=

(2π)
2(n+1)

CN
(N − 2n)

1

AN−2n

for some constant CN > 0 such that

|x|N+4 ∣∣B3 (x, h)−Basympt
3 (x, h)− LN (x)

∣∣ ≤ CN , |x| ≥ A,

and such a bound is possible due to the remainder estimate O
(

1/ |x|N+4
)
in (3.67). Here, in the third line of the

estimates, we used the fact that the integral in r converges for N > 2n− 1, 0 ≤ n ≤ 5, which is true for N > 9. For
such N , the obtained estimate of order O

(
1/AN−2n

)
is clearly even better than was aimed for (recall (3.66)).

We now fix N = 10 and proceed with estimating the term in the first line of (3.68). Upon substitution of
(3.67) in (3.43) and use of polar coordinates (with x1 = r cos θ, x2 = r sin θ, as before), let us observe that, due to
Lemma A.4 (namely, identities (A.42)–(A.43)), the only non-vanishing terms stemming from the LN part are those
proportional to

(3.69)
∫ ∞
A

∫ 2π

0

sin (2πk1r cos θ) cos2(p−l)+1 θ sin2l θdθ
dr

r2p+3
, 0 ≤ l ≤ p, p ≥ 2.

Since we can write

sin2l θ =
(
1− cos2 θ

)l
=

l∑
j=0

(
l
j

)
(−1)

l−j
cos2(l−j) θ,

with
(

l
j

)
denoting a binomial coefficient, we deduce that, to estimate Rsin

2n+1, it suffices only to consider the

quantities

Sp,j :=

∫ ∞
A

∫ 2π

0

sin (2πk1r cos θ) cos2j+1 θ dθ
dr

r2p+3
, 0 ≤ j ≤ p, p ≥ 2,(3.70)

and, in particular, their derivatives evaluated at k1 = 0 from the right: ∂2n+1
k1

Sp,j
∣∣
k1=0+

, 0 ≤ n ≤ 5.
Note that the relation between p (3.69)–(3.70) and q in (3.67) is q = 2p + 1, p ≥ 2. In other words, in the

asymptotic expansion of the field B3 at infinity, not every term contributes to Rsin
2n+1, but only the terms of every

second order in 1/A, i.e., O
(
1/A8

)
, O

(
1/A10

)
and so on.

Therefore, we can consider Sp,j only for p ≤
⌊
N−1
2

⌋
= 8, where bxc designates the integer part of x.

To sum up, we need to show that, for all 0 ≤ j ≤ p, 2 ≤ p ≤ 8 and 0 ≤ n ≤ 5, we are able to produce an estimate

(3.71) ∂2n+1
k1

Sp,j
∣∣
k1=0+

= O
(

1

A5−2n

)
.

For 0 ≤ n ≤ p, we have

∂2n+1
k1

Sp,j
∣∣
k1=0+

= (−1)
n

(2π)
2n+1

∫ ∞
A

∫ 2π

0

cos2j+1 θ dθ
dr

r2(p−n)+2
,

and hence ∣∣∣∂2n+1
k1

Sp,j
∣∣
k1=0+

∣∣∣ ≤ (2π)
2(n+1)

∫ ∞
A

dr

r2(p−n)+2
= O

(
1

A2(p−n)+1

)
,

where the convergence of the last integral is due to p ≥ n. The obtained estimate is in agreement with (3.71) since
p ≥ 2.

To treat the case n ≥ p+ 1, a more careful estimate is needed. To this end, it is convenient to make use of the
integral representation of the Bessel function J1 given by (A.5) and rewrite (3.70) as

Sp,j = (−1)
j

2π

∫ ∞
A

J
(2j)
1 (2πk1r)

dr

r2p+3
, 0 ≤ j ≤ p, p ≥ 2.
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We then evaluate

∂2n+1
k1

Sp,j = (−1)
j

(2π)
2p+3

∂
2(n−p)−1
k1

∫ ∞
A

J
(2j+2p+2)
1 (2πk1r)

dr

r
(3.72)

= (−1)
j+1

(2π)
2p+4

A∂
2(n−p)−2
k1

J
(2j+2p+2)
1 (ρ)

ρ

∣∣∣∣∣
ρ=2πk1A

= (−1)
j+1

(2π)
2(n+1)

A2(n−p)−1 d2(n−p)−2

dρ2(n−p)−2

(
J
(2j+2p+2)
1 (ρ)

ρ

)∣∣∣∣∣
ρ=2πk1A

,

where, in passing the differential operator ∂2p+2
k1

under the integral sign, we took into account the asymptotic
behavior at infinity of J1 given by (A.6) and, on the second line, employed the following identity valid for k1 > 0:

∂k1

∫ ∞
A

J
(2j+2p+2)
1 (2πk1r)

dr

r
= ∂k1

∫ ∞
2πk1A

J
(2j+2p+2)
1 (ρ)

dρ

ρ

= −2πA
J
(2j+2p+2)
1 (ρ)

ρ

∣∣∣∣∣
ρ=2πk1A

.

Now, recalling the analytic character of the function J1 (see beginning of Appendix) and, more precisely, its series
representation given by (A.2), it is clear that every derivative of J1 of even order is also analytic and vanishes at
zero. This implies analyticity of the function J (2j+2p+2)

1 (ρ) /ρ and, consequently, a bound on its every derivative
at the origin. Therefore, from (3.72), we deduce that∣∣∣∂2n+1

k1
Sp,j

∣∣
k1=0+

∣∣∣ ≤ CA2(n−p)−1,

for some constant C > 0, and hence (3.71) follows due to the fact that p ≥ 2.

Step 3: Asymptotic estimates for the net moment components. Recalling that d1 = πm1 (according to (3.35)) and
using (3.66), we obtain from (3.60)

(3.73) m1 = 2

∫∫
DA

x1B3 (x, h) d2x+ 2π

(
c1,0
A

+
3c3,0 + c1,2

12A3

)
+O

(
1

A5

)
.

Similarly, using (3.66), we rewrite (3.61)–(3.65), respectively, as

− 1

6A2

∫∫
DA

x31B3 (x, h) d2x+
π

8

(
c1,0
A
− 5c3,0 + c1,2

6A3

)
=

d3

(2π)
3
A2

+O
(

1

A5

)
(3.74)

= O
(

1

A2

)
,

1

120A4

∫∫
DA

x51B3 (x, h) d2x− π

192

(
c1,0
3A

+
7c3,0 + c1,2

8A3

)
=

d5

(2π)
5
A4

+O
(

1

A5

)
(3.75)

= O
(

1

A4

)
,

− 1

5040A6

∫∫
DA

x71B3 (x, h) d2x+
π

46080

(
c1,0
A

+
9c3,0 + c1,2

6A3

)
=

d7

(2π)
7
A6

+O
(

1

A5

)
(3.76)

= O
(

1

A5

)
,

1

362880A8

∫∫
DA

x91B3 (x, h) d2x− π

737280

(
c1,0
7A

+
11c3,0 + c1,2

60A3

)
=

d9

(2π)
9
A8

+O
(

1

A5

)
(3.77)

= O
(

1

A5

)
,
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− 1

39916800A10

∫∫
DA

x111 B3 (x, h) d2x+
π

8670412800

(
98c1,0

9A
+

13c3,0 + c1,2
A3

)
=

d11

(2π)
11
A10

+O
(

1

A5

)
(3.78)

= O
(

1

A5

)
.

While the first-order estimate for m1 given in (2.2) follows immediately from rigorously justified (3.73), the
higher-order estimates require more work. Namely, we wish to combine (3.74)–(3.78) in order to eliminate in (3.73)
the terms with

(3.79) c̃1,0 :=
c1,0
A
, c̃3,0 :=

c3,0
A3

, c̃1,2 :=
c1,2
A3

,

and, at the same time, would not commit a larger error (in order of A) than that of the eliminated term.
Expressing c1,0/A in terms of O

(
1/A2

)
quantities from (3.74) and inserting it into (3.73), we deduce the second-

order estimate for m1 given by (2.3). We note, however, that, for third or higher order estimates, identity (3.74) is
not useful due to the fact that its right-hand side has an unknown quantity d3 appearing of order O

(
1/A2

)
which

will block any further effort to increase the accuracy of estimates.
Derivation of the third-order estimate given by (2.5) is analogous to the previous one with the only difference

that c1,0/A is expressed (now in terms of O
(
1/A3

)
quantities) from (3.75) rather than from (3.74).

To proceed with derivation of estimates (2.7) and (2.9), it is convenient first to rewrite (3.75)–(3.78), respectively,
as

(3.80) 7c̃3,0 + c̃1,2 =
64

5πA4

∫∫
DA

x51B3 (x, h) d2x− 8

3
c̃1,0 +O

(
1

A4

)
=: T5,

(3.81) 9c̃3,0 + c̃1,2 =
384

7πA6

∫∫
DA

x71B3 (x, h) d2x− 6c̃1,0 +O
(

1

A5

)
=: T7,

(3.82) 11c̃3,0 + c̃1,2 =
2560

21πA8

∫∫
DA

x91B3 (x, h) d2x− 60

7
c̃1,0 +O

(
1

A5

)
=: T9,

(3.83) 13c̃3,0 + c̃1,2 =
64512

297πA10

∫∫
DA

x111 B3 (x, h) d2x− 98

9
c̃1,0 +O

(
1

A5

)
=: T11.

It is easy to see that

(3.84)
1

2
(T5 + T9) = T7,

1

2
(T7 + T11) = T9.

To obtain the fourth-order estimate for m1 given in (2.7), we shall use (3.80)–(3.82).
We start by using the first equation of (3.84) (together with definitions (3.80)–(3.82)) to express c̃1,0 = c1,0/A up
to order O

(
1/A4

)
, namely,

(3.85)
c1,0
A

= c̃1,0 = − 4

π

∫∫
DA

[
21

5

(x1
A

)4
− 36

(x1
A

)6
+ 40

(x1
A

)8]
x1B3 (x, h) d2x+O

(
1

A4

)
.

Second, we observe that the quantity 3c3,0 + c1,2 appearing in (3.73) is related to (3.80)–(3.82) as follows:

3c3,0 + c1,2
A3

=3c̃3,0 + c̃1,2 = 4 (T5 − T7) + T9(3.86)

=
256

π

∫∫
DA

[
1

5

(x1
A

)4
− 6

7

(x1
A

)6
+

10

21

(x1
A

)8]
x1B3 (x, h) d2x

+
100

21
c̃1,0 +O

(
1

A4

)
.

Finally, substitution of (3.86) in (3.73) followed by the use of (3.85) furnishes (2.7).
To arrive at the fifth-order estimate given by (2.9), we shall use identities (3.81)–(3.83). The second equation of

(3.84) gives

(3.87)
c1,0
A

= c̃1,0 =
24

π

∫∫
DA

[
−9
(x1
A

)6
+ 40

(x1
A

)8
− 392

11

(x1
A

)10]
x1B3 (x, h) d2x+O

(
1

A5

)
.
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We also have an analog of (3.79), namely,
3c3,0 + c1,2

A3
=3c̃3,0 + c̃1,2 = 5 (T7 − T9) + T11(3.88)

=
128

π

∫∫
DA

[
15

7

(x1
A

)6
− 100

21

(x1
A

)8
+

56

33

(x1
A

)10]
x1B3 (x, h) d2x

+
124

63
c̃1,0 +O

(
1

A5

)
.

Therefore, inserting of (3.88) in (3.73) followed by the use of (3.87) gives (2.9).

3.3.2. Normal component of the net moment. Similarly to the case of tangential net moment components, we
expand the integrand in (3.7) in power series in a positive neighborhood of k1 = 0, but, in contrast to that previous
situation, the attention will now be on the real part. This yields

(3.89)
[
Re B̂3 (k1, 0, h)

]∣∣∣
k1=0+

= 0,

1

2
∂2k1

[
Re B̂3 (k1, 0, h)

]∣∣∣
k1=0+

= −2π2 [〈x1M1〉+ 〈(h− x3)M3〉](3.90)

=: d2,

1

24
∂4k1

[
Re B̂3 (k1, 0, h)

]∣∣∣
k1=0+

= −4π4

3

[
3
〈

(h− x3)
2
x1M1

〉
−
〈
x31M1

〉
+
〈

(h− x3)
3
M3

〉
− 3

〈
(h− x3)x21M3

〉](3.91)

=: d4,

1

6!
∂6k1

[
Re B̂3 (k1, 0, h)

]∣∣∣
k1=0+

=− 4π6

15

[
5
〈

(h− x3)
4
x1M1

〉
− 10

〈
(h− x3)

2
x31M1

〉
+
〈
x51M1

〉
(3.92)

+
〈

(h− x3)
5
M3

〉
− 10

〈
(h− x3)

3
x21M3

〉
+ 5

〈
(h− x3)x41M3

〉]
=:d6,

1

8!
∂8k1

[
Re B̂3 (k1, 0, h)

]∣∣∣
k1=0+

=− 8π8

315

[
7
〈

(h− x3)
6
x1M1

〉
− 35

〈
(h− x3)

4
x31M1

〉
+ 21

〈
(h− x3)

2
x51M1

〉(3.93)

−
〈
x71M1

〉
+
〈

(h− x3)
7
M3

〉
− 21

〈
(h− x3)

5
x21M3

〉
+ 35

〈
(h− x3)

3
x41M3

〉
−7
〈
(h− x3)x61M3

〉]
=:d8,

1

10!
∂10k1

[
Re B̂3 (k1, 0, h)

]∣∣∣
k1=0+

=− 4π10

2385

[
9
〈

(h− x3)
8
x1M1

〉
− 84

〈
(h− x3)

6
x31M1

〉
+ 126

〈
(h− x3)

4
x51M1

〉(3.94)

− 36
〈

(h− x3)
2
x71M1

〉
+
〈
x91M1

〉
+
〈

(h− x3)
9
M3

〉
− 36

〈
(h− x3)

7
x21M3

〉
+126

〈
(h− x3)

5
x41M3

〉
− 84

〈
(h− x3)

3
x61M3

〉
+ 9

〈
(h− x3)x81M3

〉]
=:d10,

On the other hand, (3.10) implies that, for n ∈ N0,

∂2nk1

[
Re B̂3 (k1, 0, h)

]∣∣∣
k1=0+

= (−1)
n

(2π)
2n
∫∫

DA

x2n1 B3 (x, h) d2x(3.95)

+ ∂2nk1

(∫∫
R2\DA

cos (2πk1x1)Basympt
3 (x, h) d2x

)∣∣∣∣∣
k1=0+

+ ∂2nk1

(∫∫
R2\DA

cos (2πk1x1)
[
B3 (x, h)−Basympt

3 (x, h)
]

d2x

)∣∣∣∣∣
k1=0+

.
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As before, we continue in 3 steps. First, we evaluate explicitly

(3.96) Icos ≡ Icos (k1, A) :=

∫∫
R2\DA

cos (2πk1x1)Basympt
3 (x, h) d2x,

that allow us to obtain from (3.95), a set of useful identities involving remainder terms. Second, we estimate the
remainder terms, namely,

(3.97) Rcos
2n ≡ Rcos

2n (A) := ∂2nk1

(∫∫
R2\DA

cos (2πk1x1)
[
B3 (x, h)−Basympt

3 (x, h)
]

d2x

)∣∣∣∣∣
k1=0+

, n ∈ N0,

for large A. At last, we rigorously derive asymptotic formulas (2.4), (2.6), (2.8) from the obtained set of identities.

Step 1: Derivation of the set of identities. Using (3.25) and passing to the polar coordinates using x = r cos θ,
y = r sin θ, d2x = rdrdθ, we obtain from (3.96)

(3.98) Icos = c0,0Icos1 + c2,0Icos2 + c0,2Icos3 ,

where

(3.99) Icos1 :=

∫ ∞
A

∫ 2π

0

cos (2πk1r cos θ) dθ
dr

r2
,

(3.100) Icos2 :=

∫ ∞
A

∫ 2π

0

cos (2πk1r cos θ) cos2 θdθ
dr

r4
,

(3.101) Icos3 :=

∫ ∞
A

∫ 2π

0

cos (2πk1r cos θ) sin2 θdθ
dr

r4
.

Here, we used results (A.40)–(A.41) of Lemma A.4 multiple times to deduce vanishing of the integrals associated
with the terms which involve c1,0, c0,1, c1,1, c3,0, c0,3, c2,1, c1,2.

Using the integral representation of Bessel functions (due to (A.4)), integration by parts, the asymptotics of J1
given by (A.6), and the relation J ′0 (x) = −J1 (x) (see (A.10)), we can write, for k1 > 0,

Icos1 = 2π

∫ ∞
A

J0 (2πk1r)
dr

r2
= (2π)

2
k1

∫ ∞
2πk1A

J0 (x)

x2
dx(3.102)

= (2π)
2
k1

(
J0 (ρ)

ρ
−
∫ ∞
ρ

J1 (x)

x
dx

)∣∣∣∣
ρ=2πk1A

,

Icos2 = −2π

∫ ∞
A

J ′′0 (2πk1r)
dr

r4
= (2π)

4
k31

∫ ∞
2πk1A

J ′1 (x)

x4
dx(3.103)

= (2π)
4
k31

(
J1 (ρ)

ρ4
+ 4

∫ ∞
ρ

J1 (x)

x5
dx

)∣∣∣∣
ρ=2πk1A

,

Icos3 = 2π

∫ ∞
A

[J0 (2πk1r) + J ′′0 (2πk1r)]
dr

r4
= (2π)

4
k31

∫ ∞
2πk1A

J0 (x) + J ′′0 (x)

x4
dx,(3.104)

= (2π)
4
k31

(
J0 (ρ)

3ρ3
− J1 (ρ)

ρ4
− 1

3

∫ ∞
ρ

J1 (x)

x3
dx− 4

∫ ∞
ρ

J1 (x)

x5
dx

)∣∣∣∣
ρ=2πk1A

.

Inserting here the results of Lemmas A.2–A.3, namely, (A.22), (A.34)–(A.35), we arrive at

Icos1 =
2π

A

[
2J0 (ρ) +

J1 (ρ)

ρ
− J ′1 (ρ)− 2J1 (ρ)− ρ− ρJ1 (ρ)(3.105)

+ρ2J0 (ρ)− πρ2

2
J0 (ρ)H1 (ρ) +

πρ2

2
J1 (ρ)H0 (ρ)

]∣∣∣∣
ρ=2πk1A

,

Icos2 =
2π

15A3

[
−J0 (ρ)

3
+ 4J ′1 (ρ)− 4ρ2J0 (ρ)

3
− 4ρJ1 (ρ)

3
+

4ρ3

3
+

4ρ3J1 (ρ)

3
(3.106)

−4ρ4J0 (ρ)

3
+

2πρ4

3
J0 (ρ)H1 (ρ)− 2πρ4

3
J1 (ρ)H0 (ρ)

]∣∣∣∣
ρ=2πk1A

,
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Icos3 =
2π

3A3

[
J0 (ρ) +

J1 (ρ)

15ρ
− 4J ′1 (ρ)

5
− ρ2J0 (ρ)

15
− ρJ1 (ρ)

15
+
ρ3

15
+
ρ3J1 (ρ)

15
(3.107)

−ρ
4J0 (ρ)

15
+
πρ4

30
J0 (ρ)H1 (ρ)− πρ4

30
J1 (ρ)H0 (ρ)

]∣∣∣∣
ρ=2πk1A

.

Substitution of (3.105)–(3.107) into (3.98), we employ (A.2) and (A.11) to compute

(3.108) Icos|k1=0+ = 2π

(
c0,0
A

+
11c2,0 + 19c0,2

90A3

)
,

(3.109) ∂2k1I
cos
∣∣
k1=0+

=
1

4
(2π)

3
A2

(
c0,0
A
− 131c2,0 + 49c0,2

180A3

)
,

(3.110) ∂4k1I
cos
∣∣
k1=0+

= −1

8
(2π)

5
A4

(
c0,0
A

+
229c2,0 + 41c0,2

90A3

)
,

(3.111) ∂6k1I
cos
∣∣
k1=0+

=
1

16
(2π)

7
A6

(
c0,0
A

+
109c2,0 + 11c0,2

72A3

)
,

(3.112) ∂8k1I
cos
∣∣
k1=0+

= −3136 (2π)
9
A8

(
c0,0
7A

+
17c2,0 + c0,2

90A3

)
,

(3.113) ∂10k1I
cos
∣∣
k1=0+

=
7

256
(2π)

11
A10

(
c0,0
A

+
523c2,0 + 17c0,2

420A3

)
.

Taking into account (3.96), (3.97), we use (3.89)–(3.94) and (3.108)–(3.113) in (3.95) with n = 0, . . . , 5, respectively,
and thus arrive at the following set of identities:

(3.114)
∫∫

DA

B3 (x, h) d2x+ 2π

(
c0,0
A

+
11c2,0 + 19c0,2

90A3

)
+Rcos

0 = 0,

(3.115) − (2π)
2

2

∫∫
DA

x21B3 (x, h) d2x+
(2π)

3

4
A2

(
c0,0
A
− 131c2,0 + 49c0,2

180A3

)
+

1

2
Rcos

2 = d2,

(3.116)
(2π)

4

24

∫∫
DA

x41B3 (x, h) d2x− 1

192
(2π)

5
A4

(
c0,0
A

+
229c2,0 + 41c0,2

90A3

)
+

1

4!
Rcos

4 = d4,

(3.117) − (2π)
6

720

∫∫
DA

x61B3 (x, h) d2x+
1

11520
(2π)

7
A6

(
c0,0
A

+
109c2,0 + 11c0,2

72A3

)
+

1

6!
Rcos

6 = d6,

(3.118)
(2π)

8

40320

∫∫
DA

x81B3 (x, h) d2x− 7

90
(2π)

9
A8

(
c0,0
7A

+
17c2,0 + c0,2

90A3

)
+

1

8!
Rcos

8 = d8,

(3.119) − (2π)
10

3628800

∫∫
DA

x101 B3 (x, h) d2x+
1

132710400
(2π)

11
A10

(
c0,0
A

+
523c2,0 + 17c0,2

420A3

)
+

1

10!
Rcos

10 = d10.

Step 2: Analysis of the remainder terms Rcos
2n for 0 ≤ n ≤ 5. We shall show that

(3.120) Rcos
2n = O

(
1

A5−2n

)
, 0 ≤ n ≤ 5.

The reasoning will we identical to that of Step 2 of Subsection 3.3.1, therefore, we omit repetition of some details.
Using previously introduced notation LN (see (3.67)), we can write

Rcos
2n = ∂2nk1

(∫∫
R2\DA

cos (2πk1x1)LN (x) d2x

)∣∣∣∣∣
k1=0+

(3.121)

+ ∂2nk1

(∫∫
R2\DA

cos (2πk1x1)
[
B3 (x, h)−Basympt

3 (x, h)− LN (x)
]

d2x

)∣∣∣∣∣
k1=0+

.
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Assuming N > 9, we estimate∣∣∣∣∣∂2nk1
(∫∫

R2\DA

cos (2πk1x1)
[
B3 (x, h)−Basympt

3 (x, h)− LN (x)
]

d2x

)∣∣∣
k1=0+

∣∣∣∣∣
=

∣∣∣∣∣
(∫∫

R2\DA

(2πx1)
2n

|x|N+4
|x|N+4 [

B3 (x, h)−Basympt
3 (x, h)− LN (x)

]
d2x

)∣∣∣∣∣
≤ (2π)

2n+1
C̃N

∫ ∞
A

dr

rN−2n+2
=

(2π)
2(n+1)

C̃N
(N − 2n+ 1)

1

AN−2n+1
,

for some constant C̃N > 0, and note that this complies with (3.120).
We now fix N = 10 and proceed with estimating the term on the first line of (3.120). Identities (A.40)–(A.41)

of Lemma A.4 entail that the only non-vanishing terms are those of the form

(3.122)
∫ ∞
A

∫ 2π

0

cos (2πk1r cos θ) cos2(p−l) θ cos2l θdθ
dr

r2(p+1)
, 0 ≤ l ≤ p, p ≥ 2,

and hence it is sufficient to only deal with the quantities

Cp,j :=

∫ ∞
A

∫ 2π

0

cos (2πk1r cos θ) cos2j θ dθ
dr

r2(p+1)
, 0 ≤ j ≤ p, p ≥ 2.(3.123)

As before, p in (3.122)–(3.123) is related to q from (3.67) as q = 2p+ 1, p ≥ 2: only the terms O
(
1/A7

)
, O

(
1/A9

)
,

..., in (3.67) contribute to Rcos
2n . Hence, we consider Cp,j only for p ≤

⌊
N−1
2

⌋
= 8.

We are intending to show that the following estimate holds for all 0 ≤ n ≤ 5, 0 ≤ j ≤ p, 2 ≤ p ≤ 8:

(3.124) ∂2nk1 Cp,j
∣∣
k1=0+

= O
(

1

A5−2n

)
.

For 0 ≤ n ≤ p, we have

∂2nk1 Cp,j
∣∣
k1=0+

= (−1)
n

(2π)
2n
∫ ∞
A

∫ 2π

0

cos2j θ dθ
dr

r2(p−n)+2
,

and hence ∣∣∣∂2n+1
k1

Cp,j
∣∣
k1=0+

∣∣∣ ≤ (2π)
2n+1

∫ ∞
A

dr

r2(p−n)+2
= O

(
1

A2(p−n)+1

)
,

where the convergence of the last integral is due to p ≥ n. The obtained estimate satisfies (3.124) due to p ≥ 2.
For n ≥ p+ 1, we use (A.4) to rewrite (3.123) as

Cp,j = (−1)
j

2π

∫ ∞
A

J
(2j)
0 (2πk1r)

dr

r2(p+1)
, 0 ≤ j ≤ p, p ≥ 2.

We then evaluate

∂2nk1 Cp,j = (−1)
j

(2π)
2(p+1)

∂
2(n−p)−1
k1

∫ ∞
A

J
(2j+2p+1)
0 (2πk1r)

dr

r
(3.125)

= (−1)
j+1

(2π)
2p+3

A∂
2(n−p)−2
k1

J
(2j+2p+1)
0 (ρ)

ρ

∣∣∣∣∣
ρ=2πk1A

= (−1)
j+1

(2π)
2n+1

A2(n−p)−1 d2(n−p)−2

dρ2(n−p)−2

(
J
(2j+2p+1)
0 (ρ)

ρ

)∣∣∣∣∣
ρ=2πk1A

,

where the following identity, for k1 > 0, was used:

∂k1

∫ ∞
A

J
(2j+2p+1)
0 (2πk1r)

dr

r
= ∂k1

∫ ∞
2πk1A

J
(2j+2p+1)
0 (ρ)

dρ

ρ

= −2πA
J
(2j+2p+1)
0 (ρ)

ρ

∣∣∣∣∣
ρ=2πk1A

.
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Due to analyticity J0 (see beginning of Appendix), we see from (A.2) that its every derivative of odd order is
also analytic and vanishes at zero. Hence, J (2j+2p+1)

0 (ρ) /ρ is analytic as well, and, in particular, has bounded
derivatives at the origin. Therefore, (3.125) entails that∣∣∣∂2nk1 Cp,j∣∣k1=0+

∣∣∣ ≤ C̃A2(n−p)−1,

for some constant C̃ > 0, and hence (3.124) follows due to the fact that p ≥ 2.

Step 3: Asymptotic estimates for the net moment component. Since, according to (3.26), we have c0,0 = −m3

4π , and
hence using (3.120), it follows from (3.114) that

(3.126) m3 = 2

∫∫
DA

B3 (x, h) d2x+
π

45A2
(11c2,0 + 19c0,2) +O

(
1

A4

)
.

Employing (3.66), we rewrite (3.61)–(3.65), respectively, as

− 1

2A2

∫∫
DA

x21B3 (x, h) d2x− π

8

(
m3

πA
+

131c2,0 + 49c0,2
45A3

)
=

d2

(2πA)
2 +O

(
1

A5

)
(3.127)

= O
(

1

A2

)
,

1

24A4

∫∫
DA

x41B3 (x, h) d2x+
π

192

(
m3

2πA
− 229c2,0 + 41c0,2

45A3

)
=

d4

(2πA)
4 +O

(
1

A5

)
(3.128)

= O
(

1

A4

)
,

− 1

720A6

∫∫
DA

x61B3 (x, h) d2x− π

2

(
m3

πA
− 109c2,0 + 11c0,2

18A3

)
=

d6

(2πA)
6 +O

(
1

A5

)
(3.129)

= O
(

1

A5

)
,

1

40320A8

∫∫
DA

x81B3 (x, h) d2x+
π

147456

(
m3

14πA
− 17c2,0 + c0,2

45A3

)
=

d8

(2πA)
8 +O

(
1

A5

)
(3.130)

= O
(

1

A5

)
,

− 1

3628800A10

∫∫
DA

x101 B3 (x, h) d2x− π

66355200

(
m3

πA
− 523c2,0 + 17c0,2

105A3

)
=

d10

(2πA)
10 +O

(
1

A5

)
(3.131)

= O
(

1

A5

)
.

We see that (3.126) already provides the second-order estimate of m3 given in (2.4). The higher-order estimates
given by (2.6) and (2.8) can be obtained by combining (3.128)–(3.130). Note that elimination of m3 using either
(3.127) would incur a rather large error O (1/A), reducing the final estimate to the first order. Similarly, any use
of (3.131) would result in an estimate of order O

(
1/A4

)
, but such an estimate could already be deduced using the

other listed above relations.
For the sake of simplification, let us set

(3.132) c̃2,0 :=
c2,0
A3

, c̃0,2 :=
c0,2
A3

,

and rewrite (3.126) and (3.128)–(3.130), respectively, as

(3.133) 11c̃2,0 + 19c̃0,2 = −45

π

∫∫
DA

B3 (x, h) d2x+
45m3

2πA
+O

(
1

A5

)
=: T0,

(3.134) 131c̃2,0 + 49c̃0,2 = − 180

πA2

∫∫
DA

x21B3 (x, h) d2x− 45m3

πA
+O

(
1

A2

)
=: T2,

(3.135) 229c̃2,0 + 41c̃0,2 =
360

πA4

∫∫
DA

x41B3 (x, h) d2x+
45m3

2πA
+O

(
1

A4

)
=: T4,
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j 1 2 3 4

x
(j)
1 3.5 · 10−5 m 0 m 4.0 · 10−5 m −4.0 · 10−5 m
x
(j)
2 3.0 · 10−5 m 0 m −5.5 · 10−5 m 5.5 · 10−5 m
x
(j)
3 1.0 · 10−5 m 7.0 · 10−5 m 11.5 · 10−5 m 2.5 · 10−5 m

m
(j)
1 4.5 · 10−12 A ·m2 2.5 · 10−12 A ·m2 −3.0 · 10−12 A ·m2 −1.0 · 10−12 A ·m2

m
(j)
2 3.5 · 10−12 A ·m2 4.5 · 10−12 A ·m2 2.0 · 10−12 A ·m2 2.0 · 10−12 A ·m2

m
(j)
3 1.0 · 10−12 A ·m2 0.5 · 10−12 A ·m2 2.5 · 10−12 A ·m2 1.5 · 10−12 A ·m2

Table 1. Positions and dipolar moments of the synthetic magnetisation distribution (4 dipoles)

(3.136) 109c̃2,0 + 11c̃0,2 =
576

πA6

∫∫
DA

x61B3 (x, h) d2x+
18m3

πA
+O

(
1

A5

)
=: T6,

(3.137) 17c̃2,0 + c̃0,2 =
1152

7πA8

∫∫
DA

x81B3 (x, h) d2x+
45m3

14πA
+O

(
1

A5

)
=: T8.

There are multiple ways to combine equations (3.133)–(3.137) to eliminate c̃2,0 and c̃0,2. In particular, we should
use the following two relations which are straightforward to verify:

(3.138) T0 = T4 − 2T6, T0 = 4T6 − 25T8.

Substitution of (3.133), (3.135) and (3.136) in the first relation of (3.138) allows us to solve for m3/A. This leads
to the third-order estimate of m3 given by (2.6).

Similarly, plugging (3.133), (3.136) and (3.137) into the second relation of (3.138) gives (2.8), a fourth-order
estimate of m3.

4. Numerical validation and practical considerations

We demonstrate results by performing a numerical simulation on a synthetic example. In this example, we choose
magnetisation distribution to consist of 4 magnetic dipoles: ~M (~x) =

∑4
j=1 ~mjδ (~x− ~xj) with δ denoting the Dirac

delta function. The positions and the components of dipolar moments of each dipole are given in Table 1.
The net moment of this magnetisation distribution is equal to

(4.1) ~mtrue =

4∑
j=1

~m(j) = (3.0, 12.0, 5.5)
T

10−12 A ·m2.

The produced magnetic field B3 is given by

(4.2) B3 (x, h) =
µ0

4π

4∑
j=1

3
(
h− x(j)3

) [(
x1 − x(j)1

)
m

(j)
1 +

(
x2 − x(j)2

)
m

(j)
2

]
+

(
2
(
h− x(j)3

)2
−
∣∣x− x(j)

∣∣2)m(j)
3(∣∣x− x(j)

∣∣2 +
(
h− x(j)3

)2)5/2
,

and is measured on the disk DA =
{
x ∈ R2 : |x| < A

}
at the height x3 = h = 2.5 · 10−4 m. Since we now work in

Si units, we should recall Remark 2.2 and take into account the previously omitted factor µ0 = 4π · 10−7 N / A2.
In order to check robustness of the moment estimates obtained in Theorem 2.1, we also perform simulations

on data with a synthetic noise. Namely, we modify B3 using additive Gaussian white noise with the amplitude√
10−SNR/10 ·Var (B3), where SNR is the signal-to-noise ratio (in decibels) and Var (B3) is the variance of B3 on

DA. For our simulations, we choose SNR = 20 dB which corresponds to the 10% noise level.
In Figure 4.1, we illustrate the field (4.2) and its noise component on the disk DA of radius A = 7.5 · 10−4 m.
We shall now compute the integrals on the right-hand sides of (2.2)–(2.9) for different values of A. According to

our asymptotic result for large A, we expect to see that, as A grows, the values of each of these integrals converge,
with a different rate, to the value of a component of the net moment given by (4.1). Figures 4.2–4.3 show exactly
that for the tangential and normal net moment components, respectively. We note that in Figure 4.3 and further
figures involving the normal net moment component m3, a pair of the estimates are used: one with xj = x1 in (2.6),
(2.8) and the other with xj = x2.

To illustrate better the variability of the convergence rates for different asymptotic estimates, in Figures 4.4–4.5,
we plot the differences

∣∣mtrue
j −mj

∣∣, j ∈ {1, 2, 3}, against A in logarithmic scale.
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Figure 4.1. Magnetic field B3 (x, h) (left) and added noise (right) on DA for A = 7.5 · 10−4 m.

0 0.002 0.004 0.006 0.008 0.01
0

0.5

1

1.5

2

2.5

3

10
-12

1st-order

2nd-order

3rd-order

4th-order

5th-order

True value

0 0.002 0.004 0.006 0.008 0.01
0

0.2

0.4

0.6

0.8

1

1.2

10
-11

1st-order

2nd-order

3rd-order

4th-order

5th-order

True value

Figure 4.2. Estimates of the tangential net moment components m1 (left) and m2 (right) versus A.

Finally, in Figure 4.6, we directly test the estimates of the net moment components when the magnetic field
is contaminated by noise (with the noise model described above). We observe the persistence of the lower-order
estimates for the net moment components whereas the higher-order estimates clearly perform significantly worse.

Let us now briefly comment on the fact that we chose to illustrate the results on a magnetisation distribution
with a singular support. Besides its simplicity, this choice is physically motivated as any magnetisation can be
thought of a combination of dipole sources. From mathematical (numerical) viewpoint, a magnetic field produced
by continuous magnetisation distribution is given by the integral whose numerical approximation (quadrature rule)
is nothing but a weighted sum of dipoles. Consequently, we do not expect results for continuous magnetisation
distributions to be of any drastical difference. On the other hand, this highlights the applicability of our methodology
to the magnetisations that could be much more singular than smooth or square-integrable functions.

5. Discussion and conclusion

Motivated by a concrete experimental set-up, we considered a problem of estimating net magnetisation of a
sample from one component of the magnetic field available in the limited measurement area in the plane above
the sample. We approached this problem asymptotically, assuming the size of the measurement area to be large.
We derived a set of explicit formulas for the asymptotic estimates of all three components of the net moment.
For simplicity, we considered only the case of the circular geometry, i.e., where the measurement area is a disk.
Analogous results to those in Theorem 2.1 could be deduced by our method also for the rectangular geometry which
technically is even closer to what is used in Paleomagnetism lab at EAPS department of MIT, USA. The main
difference in obtaining such results with the present approach would be a technique of the asymptotic estimation
of Fourier integrals (such as the second term in the right-hand side of (3.10)) which involve both small and large
parameters (and hence must likely rely on a partial availability of explicit integration formulas).

In this paper, we have obtained and proved asymptotic estimates up to order 5 for the tangential net moment
components m1, m2 and up to order 4 for the normal component m3. The main purpose was, however, to introduce
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Figure 4.3. Estimates of the normal net moment component m3 versus A: using x1 (left) and
x2 (right) formulas.
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Figure 4.4. Convergence for the estimates of m1 (left) and m2 (right).
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Figure 4.5. Convergence for the m3 estimates: using x1 (left) and x2 (right) formulas.

a machinery that can generate asymptotic estimates of an arbitrary order. It is clear from the proof of Theorem 2.1
and auxiliary computations in Appendix that the asymptotic order of the estimates can be upgraded by proceeding
in the established manner. This would require integration of the field against polynomials of a higher order.
Practical advantages of it, however, are not yet obvious. First, such estimates are going to be extremely sensitive to
the presence of noise in B3: it was demonstrated in Section 4 that while the lower- and mid-order estimates lead to
the expected results, the estimates of higher orders are much more prone to the instability. This is, of course, not
surprising since, as it was mentioned, the moment recovery is a severely ill-posed problem (see Section 1 and [2]),
and an order of the asymptotic estimate plays the role of a regularisation parameter here. Second, when pursuing
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Figure 4.6. Estimates of the tangential net moment components m1 (left) and m2 (right) versus
A. Noisy data.
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Figure 4.7. Estimates of the normal net moment component m3 versus A: using x1 (left) and
x2 (right) formulas. Noisy data.

an estimate of a higher order, one should not forget that the obtained result is of only asymptotic nature: while
a high-order estimate would be advantageous for very large values of A, it may not be so for a smaller A due to
a potentially large value of a multiplicative constant (in A) in the remainder term. In particular, while Figures
4.2 and 4.4 show uniform improvement over the whole range of A when using estimates of higher order for m1

and m3, Figures 4.3 and 4.5 demonstrate that for some small pre-asymptotic range of A, an estimate for m3 of a
lower (second) order can be better than that of a higher (third) order. A relevant issue to bear in mind is that,
apart from the basic asymptoticness condition given by (2.1) (see also (2.11)), proceeding to higher-order estimates
assumes implicitly (but it is evident from the form of the remainder terms) that the magnetisation is sufficiently
localised so that its higher algebraic moments L(n)

j1,j2,j3
:=
〈
xj11 x

j2
2 x

j3
3 Mn

〉
, n ∈ {1, 2, 3}, (see (3.1)) do not grow

too fast with respect to their order j := j1 + j2 + j3, namely, that the quantities L(n)
j1,j2,j3

/Aj are not large for the
value of A in question. A conclusion to draw from these observations is that the mid-order estimates (e.g., those
of orders 2 and 3) are perhaps the best: both from practical prospective of proximity to the true value of the net
moment and from the viewpoint of the robustness to imperfect measurements. One can also consider a possibility
of choosing an estimate which is best possible for a given magnitude of A. This resembles a problem of finding an
optimal truncation of asymptotic series.

In future works, we should study relation of our asymptotic results to stable estimates of the net moment using
constrained optimisation approaches, in particular those obtained in [2] for planar L2 magnetisations without the
asymptotic assumption. The shape of auxiliary functions to be integrated against the measured field to produce
the net moment estimates looks similar to ours. For example, for estimates of m1 of second order and higher in
Theorem 2.1, this auxiliary function is seen to consist of the main trend (the 2x1 term) and a correction term (a
polynomial depending in the "stretched" variable x1/A) which is the largest towards the border of the disk. It would
be curious to derive an explicit asymptotic from an integro-differential equation of [2] governing the optimal solution
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in a particular class. Studying other ways of stabilisation of the estimates and regularisation is also important. In
this respect, it is natural to ask a question: what is the best way of using the redundancy of the set of asymptotic
formulas for the net moment components to arrive at an estimate with the minimal effect of noise or to have the
fastest (non-asymptotic) convergence to the true value of a net moment? For instance, in the present approach, we
have a natural redundancy for all estimates of m3 of order 3 and higher due to the freedom of choice xj = x1 and
xj = x2 in formulas (2.6), (2.8) and so on. In Figure 4.3, these estimates give almost indistinguishable results (it
can be checked that the difference between the two is not zero but very small), and hence may not look directly
useful. However, since having more relations than unknown quantities is always better when dealing with noise,
this is still an advantage. Also, it is clear from Step 3 of the proof of Theorem 2.1 that, upon involving higher order
polynomials, a richer set of lower-order estimates could be obtained.

The form of asymptotic expressions suggests the direct use of polynomial (in a stretched variables xj/A, j ∈ {1, 2})
ansantz for the derivation of estimates of higher order, with a potential use of deep learning (an idea suggested by
an anonymous reviewer).

Another path for a possible future work is to explore the possibility of obtaining asymptotic expansions analogous
to those given in Theorem 2.1 but relying on the smallness of a slghtly different asymptotic parameter. Namely, if,
instead of

(
x21 + x22

)−3/2 and
(
x21 + x22

)−5/2 in (3.21) and (3.22), respectively, one factored out
(
x21 + x22 + h2

)−3/2
and

(
x21 + x22 + h2

)−5/2 and proceeded with appropriate modifications, the final asymptotic results would have a
larger area of validity than that described by (2.1). In particular, this would cover a reduction to a dipolar case
in a situation when the measurement area DA is not necessarily large but the value of h is. However, since in the
mentioned experimental set-up, the height h is small, this modification would yield a little practical benefit but
would complicate analysis of Fourier integrals.

Along the same lines, it should be better understood why the height parameter h does not enter any of the final
estimates in the asymptotic regime. If this remains true for estimates of any order, can this be used, for example,
as a shortcut to generate the higher-order estimates?

Finally, the results of this work naturally connect to the issue of the asymptotic field extension. Indeed, the
asymptotic field expansion at infinity (3.24) is seen to feature m3 at the leading order and quantities c1,0, c0,1 at
the next order. While the estimates of m3 are given, to a different order, in (2.4), (2.6) and (2.8), it is evident
from the proof of Theorem 2.1, that the quantities c1,0, c0,1 can also be asymptotically estimated, see, e.g., (3.85)
and (3.87) (and their versions with x1 replaced by x2, as well as their lower-order analogs). Thus, this furnishes an
explicit 3-term expansion of B3 at infinity which, in general, when solving inverse magnetisation problems, should
serve as a better alternative to a simple prolongation of the field by zero outside of the measurement area. Such
a strategy can also potentially be used in setting up an iterative scheme. Of course, all of this is meaningful only
when the actual measurement area is already large enough so that the asymptotic estimates for m3, c1,0, c0,1 are
sufficiently accurate.
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Appendix A

We collect here several useful results about cylindrical functions and some relevant integrals. In what follows we
will use the notation N+ to denote natural numbers, N0 := N+ ∪ {0}, and the notation Z for integer numbers.

Basic facts about Bessel, Neumann and Struve functions. The Bessel function Jn of order n ∈ Z is an
entire function satisfying the differential equation [19, (10.2.1)]

(A.1) z2J ′′n (z) + zJ ′n (z) +
(
z2 − n2

)
Jn (z) = 0, z ∈ C.

We have the following series expansion [19, (10.2.2)]

(A.2) Jn (z) =
(z

2

)n ∞∑
k=0

(−1)
k

k! Γ (n+ k + 1)

(z
2

)2k
,

which, due to the entire character of Jn, is absolutely convergent for every z ∈ C. Here, Γ denotes the Euler gamma
function, for which we have, in particular, Γ (k) = (k − 1)! for k ∈ N+. Moreover, it is worth noting that 1/Γ (k) = 0
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for k ∈ Z\N+, which implies vanishing of negative powers of z in expansion (A.2) even for negative orders n.
The following integral representation holds [19, (10.9.1)]

(A.3) Jn (x) =
1

π

∫ π

0

cos (nt− x sin t) dt, x ∈ R.

In particular,

(A.4) J0 (x) =
1

π

∫ π

0

cos (x sin t) dt =
1

π

∫ π

0

cos (x cos t) dt =
1

2π

∫ 2π

0

cos (x cos t) dt, x ∈ R,

(A.5) J1 (x) =
1

π

∫ π

0

cos (t− x sin t) dt =
1

2π

∫ 2π

0

sin (x cos t) cos tdt, x ∈ R.

For x� 1, n ∈ N0, the leading order asymptotics reads [19, (10.17.2)]

(A.6) Jn (x) =

(
2

πx

)1/2

cos
(
x− nπ

2
− π

4

)
+O

(
1

x3/2

)
,

where the estimate of the remainder term is due to the discussion in [19, Sect. 10.17(iii)].
The Bessel functions Jn, n ∈ Z, satisfy the connection formula [19, (10.4.1)]

(A.7) J−n (x) = (−1)
n
Jn (x) ,

as well as simple recurrence relations [19, (10.6.1)]

(A.8)
1

x
Jn (x) =

1

2n
(Jn−1 (x) + Jn+1 (x)) , n 6= 0,

(A.9) J ′n (x) =
1

2
(Jn−1 (x)− Jn+1 (x)) .

In particular, (A.7) and (A.9) entail that

(A.10) J ′0 (x) = −J1 (x) .

The Struve function Hn of order n ∈ N0 ∪{−1} is an entire function defined by the absolutely convergent power
series [19, (11.2.1)]

(A.11) Hn (z) =
(z

2

)n+1 ∞∑
k=0

(−1)
k

Γ

(
k +

3

2

)
Γ

(
k + n+

3

2

) (z
2

)2k
.

The companion Struve function Kn of order n ∈ Z is defined [19, (11.2.5)] as

(A.12) Kn (z) = Hn (z)− Yn (z) ,

where Yn is the Neumann function.
For x� 1, n ∈ N0, the following asymptotics hold true [19, (11.6.1)]

(A.13) Kn (x) =
1

π

2n+1n!

(2n)!
xn−1 +O

(
xn−3

)
,

(A.14) Yn (x) =

(
2

πx

)1/2

sin
(
x− nπ

2
− π

4

)
+O

(
1

x3/2

)
,

and the remainder terms are discussed in [19, Sect. 11.6(i)] and [19, Sect. 10.17(iii)], respectively. The asymptotic
behavior of Hn (x) for x� 1, n ∈ N0, hence follows from (A.12)–(A.14). In particular, for x� 1,

(A.15) H0 (x) =

(
2

πx

)1/2

sin
(
x− π

4

)
+O

(
1

x

)
,

(A.16) H1 (x) =
2

π
+

(
2

πx

)1/2

sin

(
x− 3π

4

)
+O

(
1

x3/2

)
.

Moreover, we have the following connection formula

(A.17) H−1 (x) =
2

π
−H1 (x) .
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Some useful integrals pertinent to the cylindrical functions. The following lemmas establish several integral
relations which are also crucial for the proof in Section 3.

Lemma A.1. For n ∈ N+, ρ > 0, the following identity holds

(A.18)
∫ ∞
ρ

J1 (x)

x2n+1
dx =

1

4n2 − 1

[
2n
J1 (ρ)

ρ2n
+
J ′1 (ρ)

ρ2n−1
−
∫ ∞
ρ

J1 (x)

x2n−1
dx

]
.

Proof. First, upon integration by parts (using the asymptotic behavior at infinity of J1 given by (A.6)), we have

(A.19)
∫ ∞
ρ

J1 (x)

x2n+1
dx =

1

2n

J1 (ρ)

ρ2n
+

1

2n

∫ ∞
ρ

J ′1 (x)

x2n
dx.

Then, if we employ (A.1) to express J ′1 in terms of J1 and J ′′1 , we obtain∫ ∞
ρ

J1 (x)

x2n+1
dx =

1

2n

J1 (ρ)

ρ2n
+

1

2n

∫ ∞
ρ

J1 (x)

x2n+1
dx− 1

2n

∫ ∞
ρ

J1 (x)

x2n−1
dx− 1

2n

∫ ∞
ρ

J ′′1 (x)

x2n−1
dx,

and hence

(A.20)
∫ ∞
ρ

J ′′1 (x)

x2n−1
dx =

J1 (ρ)

ρ2n
− (2n− 1)

∫ ∞
ρ

J1 (x)

x2n+1
dx−

∫ ∞
ρ

J1 (x)

x2n−1
dx.

On the other hand, returning to (A.19) and integrating it by parts again, we arrive at∫ ∞
ρ

J1 (x)

x2n+1
dx =

1

2n

J1 (ρ)

ρ2n
+

1

2n (2n− 1)

J ′1 (ρ)

ρ2n−1
+

1

2n (2n− 1)

∫ ∞
ρ

J ′′1 (x)

x2n−1
dx(A.21)

=
1

2n− 1

J1 (ρ)

ρ2n
+

1

2n (2n− 1)

J ′1 (ρ)

ρ2n−1
− 1

2n

∫ ∞
ρ

J1 (x)

x2n+1
dx− 1

2n (2n− 1)

∫ ∞
ρ

J1 (x)

x2n−1
dx.

Here, in the second line, we eliminated the intergral term involving J ′′1 using (A.20).
Rearranging the terms in (A.21) (solving for the quantity on the left-hand side), we deduce (A.18). �

Lemma A.2. For ρ > 0, we have

(A.22)
∫ ∞
ρ

J1 (x)

x3
dx =

J0 (ρ)

3ρ
+
J1 (ρ)

3ρ2
− 1

3
− J1 (ρ)

3
+
ρJ0 (ρ)

3
− πρ

6
[J0 (ρ)H1 (ρ)− J1 (ρ)H0 (ρ)] .

Proof. Note that using (A.8), we have

(A.23)
∫ ∞
ρ

J1 (x)

x3
dx =

1

2

∫ ∞
ρ

J0 (x)

x2
dx+

1

2

∫ ∞
ρ

J2 (x)

x2
dx.

Let us start by transforming the first term in (A.23), namely,∫ ∞
ρ

J0 (x)

x2
dx =

J0 (ρ)

ρ
+

∫ ∞
ρ

J ′0 (x)

x
dx(A.24)

=
J0 (ρ)

ρ
+ J ′0 (ρ)−

∫ ∞
ρ

J0 (x) dx.

Here, in the first line, we employed integration by parts (together with the asymptotic behavior at infinity of J0
given by (A.6)). To arrive at the second line, we used the identity

J ′0 (x)

x
= −J0 (x)− J ′′0 (x) , x 6= 0,

implied by (A.1).
Performing the same procedure with the second term in (A.23), we have∫ ∞

ρ

J2 (x)

x2
dx =

J2 (ρ)

ρ
+

∫ ∞
ρ

J ′2 (x)

x
dx

=
J2 (ρ)

ρ
+ J ′2 (ρ)−

∫ ∞
ρ

J2 (x) dx+ 4

∫ ∞
ρ

J2 (x)

x2
dx,

and, hence,

(A.25)
∫ ∞
ρ

J2 (x)

x2
dx = −1

3

[
J2 (ρ)

ρ
+ J ′2 (ρ)−

∫ ∞
ρ

J2 (x) dx

]
.
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Expressions (A.24) and (A.25) imply that the integral on the left-hand side of (A.23) is expressible in terms of
two integral quantities:

∫∞
ρ
J0 (x) dx and

∫∞
ρ
J2 (x) dx. Let us now show that these quantities are simply related:

(A.26)
∫ ∞
ρ

J2 (x) dx =

∫ ∞
ρ

J0 (x) dx+ 2J1 (ρ) ,

and, moreover,

(A.27)
∫ ∞
ρ

J0 (x) dx = 1− ρJ0 (ρ)− π

2
ρ [J1 (ρ)H0 (ρ)− J0 (ρ)H1 (ρ)] .

Recalling asymptotics (A.6), we note that the integrals on the left-hand sides of (A.26), (A.27) are not absolutely
convergent, and hence an additional care with technical manipulations is needed. Namely, we shall first replace the
integration range (ρ,∞) with (ρ,R) for arbitrary finite R > ρ, and then pass to the limit as R → +∞. We shall
proceed in several steps.

Step 1: Establishing (A.26)

We start with (A.26) and use integral representation (A.3):

J2 (x) =
1

π

∫ π

0

cos (2t− x sin t) dt =
1

π

∫ π

0

cos (x sin t− 2t) dt.

Consequently, exchanging the order of integration (permissible due to the regularity of the integrand and finiteness
of the integration limits), we obtain∫ R

ρ

J2 (x) dx =
1

π

∫ π

0

sin (R sin t− 2t)− sin (ρ sin t− 2t)

sin t
dt(A.28)

=
1

π

∫ π

0

sin (R sin t)− sin (ρ sin t)

sin t
dt− 2

π

∫ π

0

[sin (R sin t) sin t+ cos (R sin t) cos t] dt

+
2

π

∫ π

0

[sin (ρ sin t) sin t+ cos (ρ sin t) cos t] dt

=

∫ R

ρ

J0 (x) dx− 2 (J1 (R)− J1 (ρ)) ,

where we used the identities

sin (R sin t− 2t) =
(
1− 2 sin2 t

)
sin (R sin t)− 2 sin t cos t cos (R sin t) ,

sin (R sin t) sin t+ cos (R sin t) cos t = cos (R sin t− t) ,

1

π

∫ π

0

cos (R sin t− t) dt = J1 (R) ,

1

π

∫ π

0

sin (R sin t)− sin (ρ sin t)

sin t
dt =

∫ R

ρ

J0 (x) dx.

and, except for the last one, also their analogs with ρ instead of R. The first two of these identities are purely
trigonometrical whereas the last two are due to (A.4)–(A.5).
Passing to the limit R→ +∞ in (A.28) using asymptotics (A.6), we thus conclude with (A.26).

Step 2: Establishing (A.27)

To deduce relation (A.27), we use [19, (10.22.2)] to write

∫ R

ρ

J0 (x) dx =
π

2
R [J0 (R)H−1 (R)− J−1 (R)H0 (R)]− π

2
ρ [J0 (ρ)H−1 (ρ)− J−1 (ρ)H0 (ρ)]

(A.29)

= RJ0 (R)− ρJ0 (ρ) +
π

2
R [J1 (R)H0 (R)− J0 (R)H1 (R)]− π

2
ρ [J1 (ρ)H0 (ρ)− J0 (ρ)H1 (ρ)] ,
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where we used (A.7), (A.17) in passing to the second line.
Note that, employing asymptotics (A.6), (A.15)–(A.16), we have, for R� 1,

RJ0 (R) +
π

2
R [J1 (R)H0 (R)− J0 (R)H1 (R)] = cos

(
R− 3π

4

)
sin
(
R− π

4

)
− cos

(
R− π

4

)
sin

(
R− 3π

4

)
+O

(
1

R1/2

)
= 1 +O

(
1

R1/2

)
.

Therefore, by passing to the limit as R→ +∞ in (A.29), we obtain (A.27).

Step 3: Conclusion of the proof

Plugging (A.27) into (A.26) and (A.24), we obtain

(A.30)
∫ ∞
ρ

J2 (x) dx = 1 + 2J1 (ρ)− ρJ0 (ρ)− π

2
ρ [J1 (ρ)H0 (ρ)− J0 (ρ)H1 (ρ)] ,

(A.31)
∫ ∞
ρ

J0 (x)

x2
dx =

J0 (ρ)

ρ
+ J ′0 (ρ)− 1 + ρJ0 (ρ) +

π

2
ρ [J1 (ρ)H0 (ρ)− J0 (ρ)H1 (ρ)] ,

respectively.
Substitution of (A.30) into (A.25) gives

(A.32)
∫ ∞
ρ

J2 (x)

x2
dx = −J2 (ρ)

3ρ
− 1

3
J ′2 (ρ) +

1

3
+

2

3
J1 (ρ)− 1

3
ρJ0 (ρ)− π

6
ρ [J1 (ρ)H0 (ρ)− J0 (ρ)H1 (ρ)] .

Finally, using (A.31)–(A.32) in (A.23), we arrive at

(A.33)
∫ ∞
ρ

J1 (x)

x3
dx =

J0 (ρ)

2ρ
−J2 (ρ)

6ρ
+

1

2
J ′0 (ρ)−1

6
J ′2 (x)−1

3
+
ρ

3
J0 (ρ)+

1

3
J1 (ρ)+

π

6
ρ [J1 (ρ)H0 (ρ)− J0 (ρ)H1 (ρ)] .

Using (A.10) and the recursive identities (due to (A.8)–(A.9))

J2 (ρ) =
2

ρ
J1 (ρ)− J0 (ρ) , J3 (ρ) =

4

ρ
J2 (ρ)− J1 (ρ) =

8

ρ2
J1 (ρ)− 4

ρ
J0 (ρ)− J1 (ρ) ,

J ′2 (ρ) =
1

2
[J1 (ρ)− J3 (ρ)] = − 4

ρ2
J1 (ρ) +

2

ρ
J0 (ρ) + J1 (ρ) ,

we transform (A.33) into the desired relation (A.22). �

Lemma A.3. For ρ > 0, in addition to (A.22), we have the following identities∫ ∞
ρ

J1 (x)

x
dx =

J1 (ρ)

ρ2
+
J ′1 (ρ)

ρ
− 1

ρ
J0 (ρ) + 1 + J1 (ρ)− ρJ0 (ρ)(A.34)

+
πρ

2
[J0 (ρ)H1 (ρ)− J1 (ρ)H0 (ρ)] ,∫ ∞

ρ

J1 (x)

x5
dx =

4J1 (ρ)

15ρ4
+
J ′1 (ρ)

15ρ3
− J0 (ρ)

45ρ
− J1 (ρ)

45ρ2
+

1

45
+
J1 (ρ)

45
(A.35)

− ρJ0 (ρ)

45
+
πρ

90
[J0 (ρ)H1 (ρ)− J1 (ρ)H0 (ρ)] ,∫ ∞

ρ

J1 (x)

x7
dx =

6

35

J1 (ρ)

ρ6
+

1

35

J ′1 (ρ)

ρ5
− 4J1 (ρ)

525ρ4
− J ′1 (ρ)

525ρ3
+
J0 (ρ)

1575ρ
+

J1 (ρ)

1575ρ2
(A.36)

− 1

1575
− J1 (ρ)

1575
+
ρJ0 (ρ)

1575
− πρ

3150
[J0 (ρ)H1 (ρ)− J1 (ρ)H0 (ρ)] .

Proof. We shall prove identities (A.34)–(A.36) sequentially.
Applying Lemma A.1 with n = 1, we have∫ ∞

ρ

J1 (x)

x3
dx =

2

3

J1 (ρ)

ρ2
+

1

3

J ′1 (ρ)

ρ
− 1

3

∫ ∞
ρ

J1 (x)

x
dx,

and, hence,

(A.37)
∫ ∞
ρ

J1 (x)

x
dx = 2

J1 (ρ)

ρ2
+
J ′1 (ρ)

ρ
− 3

∫ ∞
ρ

J1 (x)

x3
dx.

Using Lemma A.2, (A.37) becomes (A.34).
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Application of Lemma A.1 with n = 2 yields

(A.38)
∫ ∞
ρ

J1 (x)

x5
dx =

4

15

J1 (ρ)

ρ4
+

1

15

J ′1 (ρ)

ρ3
− 1

15

∫ ∞
ρ

J1 (x)

x3
dx.

With the help of Lemma A.2, (A.38) transforms into (A.35).
Finally, we use Lemma A.1 with n = 3 to obtain

(A.39)
∫ ∞
ρ

J1 (x)

x7
dx =

6

35

J1 (ρ)

ρ6
+

1

35

J ′1 (ρ)

ρ5
− 1

35

∫ ∞
ρ

J1 (x)

x5
dx.

Substitution of the already proven identity (A.35) into (A.39) furnishes (A.36). �

Lemma A.4. For α ∈ R, m, n ∈ N0, we have the following identities

(A.40)
∫ 2π

0

cos (α cos θ) cos2m+1 θ sinn θdθ = 0,

(A.41)
∫ 2π

0

cos (α cos θ) cosm θ sin2n+1 θdθ = 0,

(A.42)
∫ 2π

0

sin (α cos θ) cosm θ sin2n+1 θdθ = 0,

(A.43)
∫ 2π

0

sin (α cos θ) cos2m θ sinn θdθ = 0.

Proof. We shall prove identities (A.40)–(A.43) one after another.
Using periodicity of the integrand, we can shift the interval from (0, 2π) to (−π/2, 3π/2) and further split it in

two: ∫ 2π

0

cos (α cos θ) cos2m+1 θ sinn θdθ =

∫ 3π/2

−π/2
cos (α cos θ) cos2m+1 θ sinn θdθ(A.44)

=

∫ π/2

−π/2
. . .+

∫ 3π/2

π/2

. . . .

Performing the change of variable y = sin θ, dy = cos θdθ in each of the integrals on the second line of (A.44), we
have ∫ π/2

−π/2
cos (α cos θ) cos2m+1 θ sinn θdθ =

∫ 1

−1
cos
(
α
√

1− y2
) (

1− y2
)m

yndy,

∫ 3π/2

π/2

cos (α cos θ) cos2m+1 θ sinn θdθ =

∫ −1
1

cos
(
−α
√

1− y2
)(
−
√

1− y2
)2m

yndy

= −
∫ 1

−1
cos
(
α
√

1− y2
) (

1− y2
)m

yndy.

Here, we used the fact that cos θ =
√

1− sin2 θ > 0 for θ ∈ (−π/2, π/2) and cos θ = −
√

1− sin2 θ < 0 for
θ ∈ (π/2, 3π/2) which makes both integral quantities on the second line of (A.44) opposite to each other in sign
and thus entails (A.40).

To show (A.41), a useful change of variable is y = cos θ, dy = − sin θdθ. This, upon splitting the integration
range to into (0, π) and (π, 2π), leads to∫ 2π

0

cos (α cos θ) cosm θ sin2n+1 θdθ = −
∫ −1
1

cos (αy) ym
(
1− y2

)n
dy −

∫ 1

−1
cos (αy) ym

(
1− y2

)n
dy

=

∫ 1

−1
cos (αy) ym

(
1− y2

)n
dy −

∫ 1

−1
cos (αy) ym

(
1− y2

)n
dy

= 0.
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Similarly, we have∫ 2π

0

sin (α cos θ) cosm θ sin2n+1 θdθ = −
∫ −1
1

sin (αy) ym
(
1− y2

)n
dy −

∫ 1

−1
sin (αy) ym

(
1− y2

)n
dy

= 0,

which proves (A.42).
Finally, to show (A.43), we use the fact that identity (A.40) holds, in particular, for any α ∈ [0, β] with arbitrary

β ≥ 0. Integrating it in α over this interval and interchanging the order of integration (permissible by the regularity
of the integrand and the finite integration range), we obtain

0 =

∫ β

0

∫ 2π

0

cos (α cos θ) cos2m+1 θ sinn θdθdα =

∫ 2π

0

sin (β cos θ) cos2m θ sinn θdθ.

Since the same reasoning also works β ≤ 0 by working with an interval [β, 0], identity (A.43) is thus proved up to
a change of the notation β to α. �
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