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The Limiting Amplitude Principle (LAP): the classical and the present setups

Time-domain problem


∂2
t u (x, t) + L [u] (x, t) = e−iωtF (x) , x ∈ Rd\Ωint, t > 0,

u (x, t) = 0, x ∈ ∂Ωint, t > 0,

u (x, 0) = 0, ∂tu (x, 0) = 0, x ∈ Rd\Ωint.
(1 )

LAP ( if valid ):

u (x, t) −→
t→∞

e−iωtU (x)

( in some sense and with some rate )

Frequency-domain problem


−ω2U (x) + L [U ] (x) = F (x) , x ∈ Rd\Ωint,

U (x) = 0, x ∈ ∂Ωint,

( Sommerfeld radiation condition ), |x| → ∞.
(2 )

I Classical setting: d = 3, L [u] := −c2
0 ∆u, Ωint ⊂ R3 open and bounded or Ωint = ∅, F ∈ L2

(
R3\Ωint

)
and compactly supported, c0 > 0 constant.

I Present setting: d ∈ {1, 2, 3}, L [u] := −β−1 (x)∇ · (α (x)∇u), Ωint = ∅, F ∈ L2
(
Rd
)

and compactly supported,

α, β ∈ C∞
(
Rd
)

, α (x), β (x) > 0 non-trapping and (α (x)− α0), (β (x)− β0) are compactly supported for some constants α0, β0 > 0.

Sommerfeld radiation condition: lim
|x|→∞

|x|
d−1

2

[
∂|x|U (x)− iω

√
β0/α0U (x)

]
= 0.

Our results

Main features:

I The LAP is proved for the wave equation that has non-constant
coefficients and which is not necessarily in a divergent form. Besides the
classical case d = 3, we also consider d = 2.

I The validity of the LAP is extended to the case d = 1 with an appropriate
modification.

I The convergence in the LAP is quantified and is shown to be algebraic in
time for d ∈ {2, 3} and exponential for d = 1.

Theorem (LAP: d = 2 and d = 3)

Let d ∈ {2, 3}. Suppose that all assumptions of the present setting are
satisfied. Let u (x, t) and U (x) be the solutions to (1) and (2),
respectively. Then, for any bounded Ω ⊂ Rd , there exists a constant
C > 0 such that

for d = 2, t ≥ 0:∥∥u (·, t)− e−iωtU
∥∥
H1(Ω)

+
∥∥∂tu (·, t) + iωe−iωtU

∥∥
L2(Ω)
≤ C

1 + log
(

1 + t2
)

(1 + t2)
1
2

,

for d = 3, t ≥ 0:∥∥u (·, t)− e−iωtU
∥∥
H1(Ω)

+
∥∥∂tu (·, t) + iωe−iωtU

∥∥
L2(Ω)
≤ C

(1 + t2)
1
2

.

Theorem (LAP: d = 1 - an extension of the principle)

Let d = 1. Suppose that all assumptions of the present setting are
satisfied. Let u (x, t) and U (x) be the solutions to (1) and (2),
respectively. Then, for any bounded interval Ω ⊂ R, there exist
constants u∞ ∈ C, Λ > 0 and C > 0 such that, for t ≥ 0,∥∥u (·, t)− e−iωtU − u∞

∥∥
H1(Ω)

+
∥∥∂tu (·, t) + iωe−iωtU

∥∥
L2(Ω)
≤ Ce−Λt.

A practical application

One motivation to revisit the LAP and study rates of convergence is
analysis of time-domain numerical methods.
In particular, such methods can be very attractive for high frequencies.
For example, by an appropriate treatment, computational cost can be
effectively reduced by directing numerical efforts towards the wavefront area
yet also resolving the wavefield in the whole domain of interest:

I Arnold, A., Geevers, S., Perugia, I., Ponomarev, D. An adaptive finite
element method for high-frequency scattering problems with variable
coefficients, arXiv:2103.02511, 2021.

Some ingredients of the proof

Most of the auxiliary results concern time decay of the solutions of the
following initial-value problems:{
∂2
t u (x, t)− β−1 (x)∇ · (α (x)∇u (x, t)) = f (x, t) , x ∈ Rd , t > 0,

u (x, 0) = u0 (x) , ∂tu (x, 0) = u1 (x) , x ∈ Rd ,
(3){

∂2
t v (x, t)− c2

0 ∆v (x, t) = 0, x ∈ Rd , t > 0,

v (x, 0) = v0 (x) , ∂tv (x, 0) = v1 (x) , x ∈ Rd ,
(4)

where c0 :=
√
α0/β0.

Lemma (for the solution of (3))

Let d ≥ 2, f ≡ 0, u0 ∈ H3
(
Rd
)

, u1 ∈ H2
(
Rd
)

and∫
Rd

(
1 + |x|2

)d+1+ε (
|u0 (x)|2 + |u1 (x)|2

)
dx <∞ with some ε > 0.

Then, for any bounded Ω ⊂ Rd , there exists a constant C > 0 such that

‖u (·, t)‖H1(Ω) + ‖∂tu (·, t)‖L2(Ω) ≤
C

(1 + t2)
d−1

2

, t ≥ 0.

Moreover, if d = 1, f ≡ 0, u0 ∈ H1 (R), u1 ∈ L2 (R) and are supported
inside some Ω0 ⊂ R. Then, for any bounded interval Ω ⊂ R, there exist
a constant C > 0 such that

‖u (·, t)− u∞‖H1(Ω) + ‖∂tu (·, t)‖L2(Ω) ≤ Ce−Λt, t ≥ 0,

where u∞ := 1
2

∫
Ω0
β (x) u1 (x) dx and Λ > 0 can be estimated explicitly.

Lemma (for the solution of (3))

Let d ∈ {2, 3}, u0 ≡ 0, u1 ≡ 0, f ∈ C
(
R+, L

2
(
Rd
))

, f (·, t) is
compactly supported for each t ≥ 0, and, for some C0 > 0,

‖f (·, t)‖L2(Rd) + ‖∂tf (·, t)‖L2(Rd) ≤
C0

(1 + t2)
1
2

, t ≥ 0.

Then, for any bounded Ω ⊂ Rd , there exists a constant C > 0 such that

for d = 2, t ≥ 0: ‖u (·, t)‖H1(Ω) + ‖∂tu (·, t)‖H1(Ω) ≤ C
1 + log

(
1 + t2

)
(1 + t2)

1
2

.

for d = 3, t ≥ 0: ‖u (·, t)‖H1(Ω) + ‖∂tu (·, t)‖H1(Ω) ≤
C

(1 + t2)
1
2

.

Lemma (for the solution of (4))

Let d ∈ {2, 3} and v0, v1 are of some special form: either sufficiently
localised and oscillatory or essentially outgoing. Then, for any bounded
Ω ⊂ Rd , there exists a constant C > 0 such that

|v (x, t)| + . . . + |∂t∆v (x, t)| ≤ C

(1 + t2)
1
2

, x ∈ Ω, t ≥ 0.
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