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Abstract

A nonstationary model that relies on the spatial
nonlinear Schrödinger (NLS) equation with the time-
dependent refractive index describes laser beams in
photopolymers. We consider a toy problem, when
the rate of change of refractive index is proportional
to the squared amplitude of the electric field and the
spatial domain is a plane. In the present work, we de-
rive the NLS approximation from a two-dimensional
quasi-linear wave equation and rigorously justify this
model for appropriately small time intervals and
smooth initial data. Numerical simulations illustrate
the approximation result in the one-dimensional case.

1 Introduction

Mathematical models for laser beams in photo-
chemical materials used in physical literature [2] are
based on a spatial nonlinear Schrödinger (NLS) equa-
tion with a time-dependent refractive index. These
models are normally derived from Maxwell equations
using heuristic arguments and qualitative approxi-
mations (see e.g. [3]). Numerical simulations of such
models are performed by experimentalists [1], [6] for
theoretical explanations of complicated dynamics of
laser beams in photopolymers. The complexity of
the NLS equation modeling photochemical materials
is related to the fact that the spatial coordinate in the
direction of the beam propagation serves as an evolu-
tion time in the NLS equation, whereas the nonlinear
refractive index depends slowly on the temporal co-
ordinate. Physically, laser beams described by the
NLS approximation induce waveguides in polymers,
which affect the shape and dynamics of laser beams
via nonlinear refractive index. In the present work we
study how to justify a time-dependent NLS model
derived from a toy model resembling the Maxwell
equations. The toy model is written as a system of
a two-dimensional quasilinear wave equation and an
empirical relation for the change of the refractive in-
dex.

2 Model and results

A photopolymer occupies typically a half-space
z ≥ 0 and its face z = 0 is exposed to a laser beam. If
the beam is localized in the x-direction and uniform
in the y-direction, then the electric field has polar-
ization in the y-direction with the amplitude E being
y-independent, hence E (x, z, t) = (0, E (x, z, t) , 0) is
the electric field. The initial beam is assumed to
be spatially wide-spreaded, small in amplitude, and
monochromatic in time.

Neglecting polarization effects and uniform ma-
terial losses, the electric field satisfies a one-
dimensional quasilinear wave equation in the form

∂2xE + ∂2zE − n2∂2tE = 0, (1)

where n is referred to as the refractive index of the
photopolymer. The refractive index n changes in
time t because of the nonlinear effects induced by
the squared amplitude of the electric field E.

Let us write the squared refractive index in the
form n2 = 1 +m and assume that the rate of change
of m is governed by the empirical relation

∂m

∂t
= E2. (2)

The system (1)-(2) resembles approximation of a
more complicated system of governing equations in
physical literature [2]. We note that all physical con-
stants in this system are normalized to unity.

Asymptotic solution to the system is given by the
multi-scale expansion [5]

E (x, z, t) = ε
s+2
2 A(X,Z, T )eiω0(z−t) + c.c. (3)

m (x, z, t) = ε2M(X,Z, T ), (4)

where c.c. stands for complex conjugated terms, X =
εx, Z = ε2z, T = εst are slow variables and s ≥ 2.

If s = 2, the leading-order terms read as follows:

∂2XA+ 2iω0 (∂ZA+ ∂TA) + ω2
0MA = 0 (5)

and
∂TM = 2 |A|2 , (6)



which will be the subject of our studies.

If s > 2, at the leading order, we have the spatial
NLS equation

∂2XA+ 2iω0∂ZA+ ω2
0MA = 0. (7)

Because M depends on T by means of the same
equation (6), A depends on T implicitly in the spatial
NLS equation (7). The system (6)-(7) was used in
the previous works on photochemical materials (see
review in [2]). While justification of the system (6)-
(7) still remains an open problem, we focus on the
system (5)-(6). We shall consider solutions of the
original system (1)-(2) in an unbounded domain for
(x, z) ∈ R2 supplemented by the initial conditions
at t = 0. We hence work with the scaling X = εx,
Z = ε2z, T = ε2t and represent exact solution to the
system (1)-(2) as

E(x, z, t) = ε2
(
A(X,Z, T )eiω0(z−t) + c.c.

)
+U(x, z, t)

(8)
and

m(x, z, t) = ε2M(X,Z, T ) +N(x, z, t), (9)

where U(x, z, t) and N(x, z, t) are error terms to es-
timate. Feeding (8)-(9) into (1)-(2) and assuming
validity of (5)-(6), we arrive at the system

∂2xU + ∂2zU −
(
1 + ε2M +N

)
∂2t U = −ε2R1N

− ε6R2 (10)

and

∂tN = ε4R3 + ε2R4U + U2, (11)

where R1, . . . , R4 are some functions of A and its
derivatives.
In our work [4], we establish local well-posedness of
the systems (1)-(2) and (5)-(6), formulate a crite-
rion for continuation of local solutions of (1)-(2) and
obtain a priori energy estimates from residual equa-
tions derived from (10)-(11) by suitable near-identity
transformations. As a main outcome, we have the
following justification result for initial pulses lying
in Sobolev Hilbert space Hk

(
R2

)
:= W k,2

(
R2

)
with

sufficiently high index k.
Theorem. Given initial data A0 ∈ H8

(
R2

)
, let

A, M be local solutions to the system (5)-(6) for
T ∈ [0, T∞), where T∞ > 0 is the maximal existence
time. There exist ε0 > 0 and T0 ∈ (0, T∞) such that

for every ε ∈ (0, ε0) there is a unique solution E, m
of the system (1)-(2) for t ∈

[
0, T0/ε

2
]
satisfying

sup
t∈[0,T0/ε2]

∥∥∥E − ε2 (Aeiω0(z−t) + c.c.
)∥∥∥

H3(R2)
= O

(
ε5/2

)
,

sup
t∈[0,T0/ε2]

∥∥m− ε2M∥∥
H2(R2)

= O
(
ε5/2

)
.

3 Discussion and further challenges

We expect justificaton analysis of the NLS model
(5)-(6) to be easily extended to the case of time evo-
lution of a pulse in R3. But, in view of conventional
experimental set-up, it would be more interesting to
reformulate a problem in a half-space setting. How-
ever, justification happens to be problematic since
the applied technique is incompatible with spaces in
which we are able to prove well-posedness of the sys-
tem (5)-(6). Moreover, in a priori energy estimates,
there are non-vanishing boundary terms arising from
integration by parts. In case of the spatial NLS model
(6)-(7) for X ∈ R, Z ∈ R+, the inapplicability of
the energy method is obvious because ‖A‖L2(R×R+)

becomes infinite due to conservation in Z of L2
X (R)-

norm of solution of the NLS equation (7).
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